由于传统的插入式系统结构繁杂且频繁插拔容易发生电火花等危险,因此无线电能传输(wireless power transfer,WPT)系统凭借其固有的优势得到了广泛的研究,逐渐融入各种工业应用中.为了确保电池的性能及使用寿命,有效地为电池提供所需的...由于传统的插入式系统结构繁杂且频繁插拔容易发生电火花等危险,因此无线电能传输(wireless power transfer,WPT)系统凭借其固有的优势得到了广泛的研究,逐渐融入各种工业应用中.为了确保电池的性能及使用寿命,有效地为电池提供所需的恒定充电电流和恒定充电电压是非常必要的.然而在充电过程中,电池的等效电阻会发生显著变化从而导致系统很难在近似零相位角(zero phase angle,ZPA)运行下同时实现与负载无关的恒流输出和恒压输出.鉴于此,提出1种基于S/LCL补偿的WPT系统,该系统可以在2个固定频率下实现具有ZPA运行的恒流和恒压输出.最后,搭建了1台恒流充电为3 A和恒压充电为80 V的验证性实验样机,验证了所设计的WPT系统的正确性和可行性.展开更多
由于电池制造工艺的制约导致生产出的电池间存在一定的离散性,多次充放电后不一致性更加严重,因此有必要对电动汽车电池组进行均衡.在分析了锂电池间不一致性的基础上建立了双向均衡结构,采用粒子滤波PF(Particle Filter)法估算电池初...由于电池制造工艺的制约导致生产出的电池间存在一定的离散性,多次充放电后不一致性更加严重,因此有必要对电动汽车电池组进行均衡.在分析了锂电池间不一致性的基础上建立了双向均衡结构,采用粒子滤波PF(Particle Filter)法估算电池初始剩余电量SOC(State Of Charge),提出了先让高SOC电池放电和先给低SOC电池充电的均衡法.该方法相比传统基于充电电压的均衡法能更精确的反映电池能量状态.实验结果表明,对于要求低能耗的系统采用先让高SOC电池放电均衡至±2%平均SOC界限范围;对于要求均衡结果一致性较高的系统采用先给低SOC电池充电均衡至±1%平均SOC界限范围.该均衡方法有效改善了电池组间的不一致性,对于提高电动汽车锂离子电池的使用寿命和续航里程具有实际意义.展开更多
文摘由于电池制造工艺的制约导致生产出的电池间存在一定的离散性,多次充放电后不一致性更加严重,因此有必要对电动汽车电池组进行均衡.在分析了锂电池间不一致性的基础上建立了双向均衡结构,采用粒子滤波PF(Particle Filter)法估算电池初始剩余电量SOC(State Of Charge),提出了先让高SOC电池放电和先给低SOC电池充电的均衡法.该方法相比传统基于充电电压的均衡法能更精确的反映电池能量状态.实验结果表明,对于要求低能耗的系统采用先让高SOC电池放电均衡至±2%平均SOC界限范围;对于要求均衡结果一致性较高的系统采用先给低SOC电池充电均衡至±1%平均SOC界限范围.该均衡方法有效改善了电池组间的不一致性,对于提高电动汽车锂离子电池的使用寿命和续航里程具有实际意义.