期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
小波-神经网络混合模型预测地下水水位 被引量:6
1
作者 张建锋 刘见宝 +1 位作者 崔树军 谢玉华 《长江科学院院报》 CSCD 北大核心 2016年第8期18-21,共4页
由于过量开采地下水,华北平原的许多城市出现地下水水位持续下降趋势,由此导致了许多严重的环境问题,如地下水枯竭、地面沉降和海水入侵等。为了准确预测城市地下水水位变化,利用小波变换的多尺度分析特征,建立了小波-神经网络混合模型... 由于过量开采地下水,华北平原的许多城市出现地下水水位持续下降趋势,由此导致了许多严重的环境问题,如地下水枯竭、地面沉降和海水入侵等。为了准确预测城市地下水水位变化,利用小波变换的多尺度分析特征,建立了小波-神经网络混合模型(以下简称"混合模型"),并研究了其在地下水水位预测中的精度。利用北京市平谷区地下水水位观测资料,分别用BP网络和混合模型对该区地下水水位进行了预测。采用均方根误差(RMSE)、平均绝对误差(MAE)和线性相关系数(R)对模型预测的精度进行度量。预测结果表明:混合模型第1至第3个月的地下水水位平均绝对误差分别是0.535,0.598和0.634 m;而BP模型的平均绝对误差分别为0.566,0.824和0.940 m。混合模型的预测误差分别为BP模型的95%,73%和67%。使用混合模型能明显提高预测的精度,显著增加有效预测时段长度。 展开更多
关键词 华北平原 过量开采 地下水水位 离散小波变换 人工神经网络 预测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部