期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
利用改进型GAN网络的面部表情识别 被引量:4
1
作者 程学军 王建平 邢萧飞 《计算机工程与设计》 北大核心 2022年第8期2294-2302,共9页
现有方法识别精度受到大量与表情识别无关特征的影响,提出一种利用改进型GAN网络的面部表情识别。采用非对称局部二值模式提取特征;设计特征分离模型的改进Exchange-GAN网络,通过部分特征交换和约束实现表情相关特征和表情无关特征的分... 现有方法识别精度受到大量与表情识别无关特征的影响,提出一种利用改进型GAN网络的面部表情识别。采用非对称局部二值模式提取特征;设计特征分离模型的改进Exchange-GAN网络,通过部分特征交换和约束实现表情相关特征和表情无关特征的分离,经过GAN分析实现面部表情识别;改进判别器与特征提取器间的对抗训练和内容训练,提高特征提取能力和面部表情识别的准确率。在3种数据集上对所提方法进行实验论证,其结果表明,该方法能够实现快速收敛,以FER2013数据集为例,其识别准确率较其它对比方法,分别提高了5.85%、4.13%和3.68%,具有较高的鲁棒性。 展开更多
关键词 非对称LBP 改进Exchange-GAN网络 面部表情识别 特征分离 对抗训练 中心损失
在线阅读 下载PDF
利用改进型VGG标签学习的表情识别方法 被引量:6
2
作者 程学军 邢萧飞 《计算机工程与设计》 北大核心 2022年第4期1134-1144,共11页
针对图像表情判别精度低下的问题,提出一种基于改进型VGG-16网络的人脸表情识别方法。为解决传统方法存在像素特征分布不均的问题,采用基于改进的高斯混合模型进行图像特征数据的有效提取;基于改进的VGG-16深度神经网络,增强人脸表情识... 针对图像表情判别精度低下的问题,提出一种基于改进型VGG-16网络的人脸表情识别方法。为解决传统方法存在像素特征分布不均的问题,采用基于改进的高斯混合模型进行图像特征数据的有效提取;基于改进的VGG-16深度神经网络,增强人脸表情识别的训练样本,实现对采集的图像数据多表情多场景精准区分。基于通用数据集及自采集数据集进行仿真实验,验证所提方法在表情识别的准确度和速度方面都展现出一定优势,尤其在黑暗条件下识别准确率可达90%左右。 展开更多
关键词 表情识别 VGG-16网络模型 高斯混合模型 相关情绪标签分布学习 正则化学习 红外图像
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部