期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度卷积神经网络和二进制哈希学习的图像检索方法
被引量:
36
1
作者
彭天强
栗芳
《电子与信息学报》
EI
CSCD
北大核心
2016年第8期2068-2075,共8页
随着图像数据的迅猛增长,当前主流的图像检索方法采用的视觉特征编码步骤固定,缺少学习能力,导致其图像表达能力不强,而且视觉特征维数较高,严重制约了其图像检索性能。针对这些问题,该文提出一种基于深度卷积神径网络学习二进制哈希编...
随着图像数据的迅猛增长,当前主流的图像检索方法采用的视觉特征编码步骤固定,缺少学习能力,导致其图像表达能力不强,而且视觉特征维数较高,严重制约了其图像检索性能。针对这些问题,该文提出一种基于深度卷积神径网络学习二进制哈希编码的方法,用于大规模的图像检索。该文的基本思想是在深度学习框架中增加一个哈希层,同时学习图像特征和哈希函数,且哈希函数满足独立性和量化误差最小的约束。首先,利用卷积神经网络强大的学习能力挖掘训练图像的内在隐含关系,提取图像深层特征,增强图像特征的区分性和表达能力。然后,将图像特征输入到哈希层,学习哈希函数使得哈希层输出的二进制哈希码分类误差和量化误差最小,且满足独立性约束。最后,给定输入图像通过该框架的哈希层得到相应的哈希码,从而可以在低维汉明空间中完成对大规模图像数据的有效检索。在3个常用数据集上的实验结果表明,利用所提方法得到哈希码,其图像检索性能优于当前主流方法。
展开更多
关键词
图像检索
深度卷积神径网络
二进制哈希
量化误差
独立性
在线阅读
下载PDF
职称材料
基于二进制哈希与空间金字塔的视觉词袋模型生成方法
被引量:
1
2
作者
彭天强
栗芳
《计算机工程》
CAS
CSCD
北大核心
2016年第12期164-170,共7页
构建视觉词典是视觉词袋模型中的关键步骤,目前大多数视觉词典是基于k-means及其改进算法聚类生成。但由于k-means聚类的局限性以及样本空间结构的复杂性与高维性,该方式构建的视觉词典存在区分性较差、构建时间过长、不包含空间信息等...
构建视觉词典是视觉词袋模型中的关键步骤,目前大多数视觉词典是基于k-means及其改进算法聚类生成。但由于k-means聚类的局限性以及样本空间结构的复杂性与高维性,该方式构建的视觉词典存在区分性较差、构建时间过长、不包含空间信息等问题。为此,提出一种改进的视觉词袋模型生成方法,以缩短视觉词典的构建时间。提取图像的局部特征点,构成局部特征点描述集。学习二进制哈希函数,将局部特征点映射为视觉单词,并对视觉词进行过滤,生成二进制哈希码的视觉词典。利用生成的视觉词典,结合空间金字塔匹配模型生成新的视觉词典模型,将图像表示为空间金字塔直方图向量,并应用于图像分类和检索。实验结果表明,该模型具有较高的分类精度和检索性能。
展开更多
关键词
二进制哈希
空间金字塔匹配模型
视觉词袋模型
图像分类
图像检索
在线阅读
下载PDF
职称材料
题名
基于深度卷积神经网络和二进制哈希学习的图像检索方法
被引量:
36
1
作者
彭天强
栗芳
机构
河南
工程
学院计算机学院
河南图像识别工程技术中心
出处
《电子与信息学报》
EI
CSCD
北大核心
2016年第8期2068-2075,共8页
基金
国家自然科学基金(61301232)~~
文摘
随着图像数据的迅猛增长,当前主流的图像检索方法采用的视觉特征编码步骤固定,缺少学习能力,导致其图像表达能力不强,而且视觉特征维数较高,严重制约了其图像检索性能。针对这些问题,该文提出一种基于深度卷积神径网络学习二进制哈希编码的方法,用于大规模的图像检索。该文的基本思想是在深度学习框架中增加一个哈希层,同时学习图像特征和哈希函数,且哈希函数满足独立性和量化误差最小的约束。首先,利用卷积神经网络强大的学习能力挖掘训练图像的内在隐含关系,提取图像深层特征,增强图像特征的区分性和表达能力。然后,将图像特征输入到哈希层,学习哈希函数使得哈希层输出的二进制哈希码分类误差和量化误差最小,且满足独立性约束。最后,给定输入图像通过该框架的哈希层得到相应的哈希码,从而可以在低维汉明空间中完成对大规模图像数据的有效检索。在3个常用数据集上的实验结果表明,利用所提方法得到哈希码,其图像检索性能优于当前主流方法。
关键词
图像检索
深度卷积神径网络
二进制哈希
量化误差
独立性
Keywords
Image retrieval
Deep convolutional neural networks
Binary hashing
Quantization error
Independence
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
基于二进制哈希与空间金字塔的视觉词袋模型生成方法
被引量:
1
2
作者
彭天强
栗芳
机构
河南
工程
学院计算机学院
河南图像识别工程技术中心
出处
《计算机工程》
CAS
CSCD
北大核心
2016年第12期164-170,共7页
基金
国家自然科学基金青年科学基金"基于位置敏感哈希的图像语义检索技术研究"(61301232)
河南工程学院博士基金
文摘
构建视觉词典是视觉词袋模型中的关键步骤,目前大多数视觉词典是基于k-means及其改进算法聚类生成。但由于k-means聚类的局限性以及样本空间结构的复杂性与高维性,该方式构建的视觉词典存在区分性较差、构建时间过长、不包含空间信息等问题。为此,提出一种改进的视觉词袋模型生成方法,以缩短视觉词典的构建时间。提取图像的局部特征点,构成局部特征点描述集。学习二进制哈希函数,将局部特征点映射为视觉单词,并对视觉词进行过滤,生成二进制哈希码的视觉词典。利用生成的视觉词典,结合空间金字塔匹配模型生成新的视觉词典模型,将图像表示为空间金字塔直方图向量,并应用于图像分类和检索。实验结果表明,该模型具有较高的分类精度和检索性能。
关键词
二进制哈希
空间金字塔匹配模型
视觉词袋模型
图像分类
图像检索
Keywords
binary Hashing
Spatial Pyramid Matching ( classification
image retrieval SPM ) model
Bag of Visual Word ( BoVW ) model
image
分类号
TP18 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度卷积神经网络和二进制哈希学习的图像检索方法
彭天强
栗芳
《电子与信息学报》
EI
CSCD
北大核心
2016
36
在线阅读
下载PDF
职称材料
2
基于二进制哈希与空间金字塔的视觉词袋模型生成方法
彭天强
栗芳
《计算机工程》
CAS
CSCD
北大核心
2016
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部