期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于蚁群优化支持向量机的短时交通流量预测 被引量:11
1
作者 徐鹏 姜凤茹 《计算机应用与软件》 CSCD 北大核心 2013年第3期250-254,共5页
为了提高短时交通流量的预测精度,提出一种蚁群算法(ACO)优化支持向量机(SVM)参数的短时交通流量预测模型(ACO-SVM)。将SVM参数的选取看作参数的组合优化问题求解,采用鲁棒性较强的ACO来搜索最优解。仿真结果表明,ACO-SVM在预测精度、... 为了提高短时交通流量的预测精度,提出一种蚁群算法(ACO)优化支持向量机(SVM)参数的短时交通流量预测模型(ACO-SVM)。将SVM参数的选取看作参数的组合优化问题求解,采用鲁棒性较强的ACO来搜索最优解。仿真结果表明,ACO-SVM在预测精度、收敛速度、泛化能力等方面均优于参比模型,更适合于短时交通流量的预测。 展开更多
关键词 短时交通流量 支持向量机 蚁群优化算法 预测
在线阅读 下载PDF
粒子群算法和K近邻相融合的网络入侵检测 被引量:6
2
作者 徐鹏 姜凤茹 《计算机工程与应用》 CSCD 2014年第11期95-98,共4页
为了提高网络入侵检测效果,提出一种粒子群优化算法(PSO)和K最近邻相融(KNN)的网络入侵检测模型(PSO-KNN)。首先特征子集和KNN参数作为一个粒子,然后通过粒子之间的信息交流和相互协作,找到最优特征子集和KNN参数,从而建立最优网络入侵... 为了提高网络入侵检测效果,提出一种粒子群优化算法(PSO)和K最近邻相融(KNN)的网络入侵检测模型(PSO-KNN)。首先特征子集和KNN参数作为一个粒子,然后通过粒子之间的信息交流和相互协作,找到最优特征子集和KNN参数,从而建立最优网络入侵检测模型,最后利用KDD 1999数据集对模型性能进行测试。结果表明,相对于其他入侵检测算法,PSO-KNN更有效地精简网络数据特征,提高分类算法的网络入侵检测速度及检测率。 展开更多
关键词 网络入侵检测 特征选择 粒子群优化算法 K最近邻
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部