期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
InterDroid:面向概念漂移的可解释性Android恶意软件检测方法 被引量:10
1
作者 张炳 文峥 +1 位作者 魏筱瑜 任家东 《计算机研究与发展》 EI CSCD 北大核心 2021年第11期2456-2474,共19页
针对Android恶意软件检测存在特征引入过程主观性高、特征选择过程可解释性差、训练模型检测效果不具备时间稳定性的问题,提出了一种面向概念漂移的可解释性Android恶意软件检测方法InterDroid,该方法首先通过高质量的人工Android恶意... 针对Android恶意软件检测存在特征引入过程主观性高、特征选择过程可解释性差、训练模型检测效果不具备时间稳定性的问题,提出了一种面向概念漂移的可解释性Android恶意软件检测方法InterDroid,该方法首先通过高质量的人工Android恶意软件分析报告引入权限、API包名、意图、Dalvik字节码4种特征.并通过自动化机器学习算法TPOT(tree-based tipeline optimization tool)获得InterDroid训练及对比算法,从而摒弃传统方法中繁复的模型选择与参数调整过程.其后,融入模型解释算法SHAP(shapley additive explanations)改进传统的特征包装方法,从而获得对分类结果具有高贡献度的特征组合用于检测模型训练.最后,通过曼惠特尼U(Mann-Whitney U,MWU)与机器学习模型的双重检验证明概念漂移现象在Android恶意软件检测中的存在性.并基于联合分布适配(joint distribution adaptation,JDA)算法提高检测模型对新时期Android恶意软件的检测准确率.实验表明:InterDroid筛选出的特征组合具备稳定性与可解释性.同时,InterDroid中的特征迁移模块可将自身对2019年、2020年新兴Android恶意软件的检测准确率分别提高46%,44%. 展开更多
关键词 Android恶意软件检测 可解释性 概念漂移 特征迁移 自动化机器学习
在线阅读 下载PDF
基于KNN离群点检测和随机森林的多层入侵检测方法 被引量:80
2
作者 任家东 刘新倩 +2 位作者 王倩 何海涛 赵小林 《计算机研究与发展》 EI CSCD 北大核心 2019年第3期566-575,共10页
入侵检测系统能够有效地检测网络中异常的攻击行为,对网络安全至关重要.目前,许多入侵检测方法对攻击行为Probe(probing),U2R(user to root),R2L(remote to local)的检测率比较低.基于这一问题,提出一种新的混合多层次入侵检测模型,检... 入侵检测系统能够有效地检测网络中异常的攻击行为,对网络安全至关重要.目前,许多入侵检测方法对攻击行为Probe(probing),U2R(user to root),R2L(remote to local)的检测率比较低.基于这一问题,提出一种新的混合多层次入侵检测模型,检测正常和异常的网络行为.该模型首先应用KNN(K nearest neighbors)离群点检测算法来检测并删除离群数据,从而得到一个小规模和高质量的训练数据集;接下来,结合网络流量的相似性,提出一种类别检测划分方法,该方法避免了异常行为在检测过程中的相互干扰,尤其是对小流量攻击行为的检测;结合这种划分方法,构建多层次的随机森林模型来检测网络异常行为,提高了网络攻击行为的检测效果.流行的数据集KDD(knowledge discovery and data mining) Cup 1999被用来评估所提出的模型.通过与其他算法进行对比,该方法的准确率和检测率要明显优于其他算法,并且能有效地检测Probe,U2R,R2L这3种攻击类型. 展开更多
关键词 网络安全 入侵检测系统 KNN离群点检测 随机森林模型 多层次
在线阅读 下载PDF
融合重要性采样和池化聚合的知识图推荐算法 被引量:6
3
作者 梁顺攀 涂浩 +2 位作者 王荣生 原福永 张熙瑞 《小型微型计算机系统》 CSCD 北大核心 2021年第5期967-971,共5页
现有的知识图推荐模型通过聚合相邻实体节点的特征和结构信息来更新当前位置实体节点的嵌入表示,为了控制计算成本和维护模型的稳定性,通常使用随机的固定大小的采样邻域来替代完整的知识图.然而,这些方法存在两个问题:首先,随机选择的... 现有的知识图推荐模型通过聚合相邻实体节点的特征和结构信息来更新当前位置实体节点的嵌入表示,为了控制计算成本和维护模型的稳定性,通常使用随机的固定大小的采样邻域来替代完整的知识图.然而,这些方法存在两个问题:首先,随机选择的邻域限制了知识图用于辅助推荐的效果和稳定性.此外,多数模型只是对所采样邻居节点特征进行均值聚合,这种聚合方法没有充分挖掘所采样邻居节点对于目标节点影响的差异性.针对以上问题,本文提出了基于关系紧密度的重要性采样方法,通过计算关系紧密度选择对目标节点更重要的邻域,以及基于池化操作的聚合方法,通过引入池化层训练得到不同邻居节点对目标节点的差异化权值.在结合本文提出的两种方法后,本文提出基于图神经网络的知识图推荐算法KGCN-PL.最后,本文评估了所改进模型在5个真实世界数据集上的性能,与近几年提出的基于知识图的推荐算法进行对比,在AUC,召回率指标上均取得提升. 展开更多
关键词 知识图谱 邻域采样 邻域聚合 推荐系统 图神经网络
在线阅读 下载PDF
基于特征选择的工业互联网入侵检测分类方法 被引量:25
4
作者 任家东 张亚飞 +1 位作者 张炳 李尚洋 《计算机研究与发展》 EI CSCD 北大核心 2022年第5期1148-1159,共12页
由于工业互联网接入设备的多样性和差异性,使其维护困难且易受攻击,针对该安全问题需要引入相关的防御系统来识别各种入侵攻击.传统的入侵检测系统能够检测到的攻击类型较少,且网络流量数据由于存在冗余导致无关特征使得分类性能较差.因... 由于工业互联网接入设备的多样性和差异性,使其维护困难且易受攻击,针对该安全问题需要引入相关的防御系统来识别各种入侵攻击.传统的入侵检测系统能够检测到的攻击类型较少,且网络流量数据由于存在冗余导致无关特征使得分类性能较差.因此,提出一种基于特征选择的工业互联网入侵检测分类方法.该方法首先对数据集进行预处理,并通过计算特征的皮尔逊相关系数来判断特征的强弱关系,确定最优的阈值进行特征提取;之后从机器学习和深度学习2个角度,利用逻辑回归、支持向量机、K近邻、决策树、随机森林、多层感知机、卷积神经网络和时空网络8种模型分别进行二分类和多分类实验,并作评估.实验结果表明,随机森林的二分类效果最佳,决策树的多分类效果最佳.最后在真实工业互联网实践中验证了所提方法的有效性. 展开更多
关键词 工业互联网 入侵检测 皮尔逊相关系数 机器学习 深度学习
在线阅读 下载PDF
融合K-shell和标签熵的重叠社区发现算法 被引量:5
5
作者 陈晶 刘江川 魏娜娜 《计算机应用》 CSCD 北大核心 2022年第4期1162-1169,共8页
针对标签传播算法稳定性不足、准确性较差的问题,提出了融合K-shell和标签熵的标签传播重叠社区发现算法OCKELP。首先,采用K-shell算法减少了标签初始化时间,并利用标签熵的更新序列提高了算法的稳定性;其次,引入综合影响力进行标签选择... 针对标签传播算法稳定性不足、准确性较差的问题,提出了融合K-shell和标签熵的标签传播重叠社区发现算法OCKELP。首先,采用K-shell算法减少了标签初始化时间,并利用标签熵的更新序列提高了算法的稳定性;其次,引入综合影响力进行标签选择,并将社区层次信息和节点局部信息融合提高了算法的准确性。在真实网络数据集上,OCKELP相较于重叠社区发现算法(COPRA)、基于多核心标签传播的重叠社区识别方法(OMKLP)、SLPA的模块度最大提升分别约68.64%、53.99%、42.29%,在人工网络数据集的归一化互信息(NMI)值上,OCKELP相较于其他三种算法也有着明显优势,且随着重叠节点隶属社区数量的增加可以挖掘出社区的真实结构。 展开更多
关键词 标签传播 标签熵 重叠社区 综合影响力 社区层次
在线阅读 下载PDF
基于全息图平稳分布因子的离群点检测算法
6
作者 张忠平 郭鑫 +1 位作者 张玉停 张睿博 《计算机应用》 CSCD 北大核心 2023年第6期1705-1712,共8页
使用传统的基于图的方法进行离群点检测构造转移概率矩阵需要使用数据的整体分布,容易忽略数据的局部信息,导致检测精度低,而使用数据的局部信息可能导致“悬空链接”的问题。针对这些问题,提出一个基于全息图平稳分布因子的离群点检测... 使用传统的基于图的方法进行离群点检测构造转移概率矩阵需要使用数据的整体分布,容易忽略数据的局部信息,导致检测精度低,而使用数据的局部信息可能导致“悬空链接”的问题。针对这些问题,提出一个基于全息图平稳分布因子的离群点检测算法(HSDFOD)。首先,使用相似度矩阵自适应地获取每个数据点的邻居集合构造一个局部信息图;然后,引入最小生成树构造一个全局信息图;最后,利用局部信息图和全局信息图融合为一个全息图构造转移概率矩阵进行马尔可夫随机游走,并通过生成的平稳分布检测离群点。在人工数据集A1~A4上,HSDFOD的精确率均高于SOD(Outlier Detection in axis-parallel Subspaces of high dimensional data)、SUOD(accelerating large-Scale Unsupervised heterogeneous Outlier Detection)、IForest(Isolation Forest)和HBOS(Histogram-Based Outlier Score);曲线下面积(AUC)整体上也优于这4个对比算法。在真实数据集上,HSDFOD的精确率均高于80%,AUC均高于SOD、SUOD、IForest和HBOS。可见,所提算法在离群点检测上有较好的应用前景。 展开更多
关键词 离群点 全息图 转移概率矩阵 马尔可夫随机游走 平稳分布因子
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部