期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于泛化图卷积神经网络的深度文档聚类模型
被引量:
2
1
作者
柴变芳
李政
+1 位作者
赵晓鹏
王荣娟
《南京师大学报(自然科学版)》
CAS
北大核心
2024年第1期82-90,共9页
文本分类是自然语言处理中一项重要任务,基于图神经网络的文本分类因其可建模文本间的多种交互成为一种主流方法.但现有方法大都依赖标签,而真实标签难以获取.提出一个基于图泛化卷积神经网络的深度文档聚类模型(generalization graph c...
文本分类是自然语言处理中一项重要任务,基于图神经网络的文本分类因其可建模文本间的多种交互成为一种主流方法.但现有方法大都依赖标签,而真实标签难以获取.提出一个基于图泛化卷积神经网络的深度文档聚类模型(generalization graph convolutional neural network-deep document clustering, GGCN-DDC),同时实现文本表示学习和无监督文档分类.该模型首先将每个文档建模为文本图;然后采用泛化卷积层学习更有区分力的文档词特征表示和文档表示;最后通过文档聚类损失和文档图重建损失约束参数学习算法.在3个基准数据集上的实验表明,GGCN-DDC在多个指标上均优于其他基准算法.
展开更多
关键词
图神经网络
深度图聚类
文本分类
文本表示
在线阅读
下载PDF
职称材料
题名
基于泛化图卷积神经网络的深度文档聚类模型
被引量:
2
1
作者
柴变芳
李政
赵晓鹏
王荣娟
机构
河北
地质大学信息工程学院
河北省财政厅一体化系统运维中心
河北
地质职工大学
出处
《南京师大学报(自然科学版)》
CAS
北大核心
2024年第1期82-90,共9页
基金
河北省高等学校科学技术研究项目(ZD2020175)
河北地质大学2023国家预研项目(KY202310).
文摘
文本分类是自然语言处理中一项重要任务,基于图神经网络的文本分类因其可建模文本间的多种交互成为一种主流方法.但现有方法大都依赖标签,而真实标签难以获取.提出一个基于图泛化卷积神经网络的深度文档聚类模型(generalization graph convolutional neural network-deep document clustering, GGCN-DDC),同时实现文本表示学习和无监督文档分类.该模型首先将每个文档建模为文本图;然后采用泛化卷积层学习更有区分力的文档词特征表示和文档表示;最后通过文档聚类损失和文档图重建损失约束参数学习算法.在3个基准数据集上的实验表明,GGCN-DDC在多个指标上均优于其他基准算法.
关键词
图神经网络
深度图聚类
文本分类
文本表示
Keywords
graph neural network
deep graph clustering
text classification
text representation
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于泛化图卷积神经网络的深度文档聚类模型
柴变芳
李政
赵晓鹏
王荣娟
《南京师大学报(自然科学版)》
CAS
北大核心
2024
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部