期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
渐进式分层特征提取的综合能源多任务负荷预测
1
作者 王德文 安涵 +1 位作者 张林飞 赵文清 《智能系统学报》 北大核心 2025年第4期858-870,共13页
针对综合能源系统中电、冷、热负荷存在复杂耦合关系,传统多任务学习模型难以学习到有效的多元负荷耦合特征可能导致预测精度降低的问题,本文充分考虑多元负荷复杂耦合关系,提出一种渐进式分层特征提取的综合能源多任务负荷预测模型。... 针对综合能源系统中电、冷、热负荷存在复杂耦合关系,传统多任务学习模型难以学习到有效的多元负荷耦合特征可能导致预测精度降低的问题,本文充分考虑多元负荷复杂耦合关系,提出一种渐进式分层特征提取的综合能源多任务负荷预测模型。将全年数据按季节划分,分析各季节下电、冷、热负荷间耦合强度;采用变分模态分解将历史负荷序列分解为多个不同频率的分量,可以更好挖掘多元负荷的深层时序特征;渐进式分层提取多元负荷的耦合特征,并动态分配耦合特征对预测结果的影响权重,避免耦合特征无效时模型预测精度下降。实验结果证明,在不同的多元负荷耦合强度下,渐进式分层特征提取的多任务负荷预测在精度上有更好表现。研究结论可用于指导综合能源多元负荷预测过程。 展开更多
关键词 负荷预测 综合能源 多任务学习 多元负荷 渐进式分层 特征提取 最大信息系数 变分模态分解
在线阅读 下载PDF
数字孪生中混合知识蒸馏辅助的异构联邦类增量学习
2
作者 张铭泉 贾圆圆 张荣华 《智能系统学报》 北大核心 2025年第4期905-915,共11页
在数字孪生背景下,联邦学习面临数据非独立同分布和类别动态变化的挑战,即空间和时间范围内的数据异构问题。为解决这一问题,本文构建了一个数字孪生背景下的联邦类增量学习整体框架,并提出了一种混合知识蒸馏辅助的联邦类增量学习方法... 在数字孪生背景下,联邦学习面临数据非独立同分布和类别动态变化的挑战,即空间和时间范围内的数据异构问题。为解决这一问题,本文构建了一个数字孪生背景下的联邦类增量学习整体框架,并提出了一种混合知识蒸馏辅助的联邦类增量学习方法。具体来说,与传统联邦学习本地更新方式不同,本文方法通过自适应语义蒸馏损失和自适应注意力蒸馏损失集成的混合知识蒸馏方法提取旧全局模型中输出层的软标签语义知识和中间层的高维特征知识,使客户端模型在拟合新数据的同时有效减少对旧数据的遗忘,提升联邦类增量模型的性能。在相同的数据异构情况下,与对比模型相比,本文方法在CIFAR100数据集上精度提升1.85%~2.56%,在医学CT图像数据集OrganAMNIST、OrganCMNIST、OrganSMNIST上也取得了最优或次优的性能。 展开更多
关键词 数字孪生 联邦类增量学习 混合知识蒸馏 数据异构 图像分类 灾难性遗忘 CT图像 联邦学习
在线阅读 下载PDF
融合大模型与图神经网络的电力设备缺陷诊断 被引量:8
3
作者 李莉 时榕良 +1 位作者 郭旭 蒋洪鑫 《计算机科学与探索》 CSCD 北大核心 2024年第10期2643-2655,共13页
电力系统中不同装置设备的缺陷评级和分析处理常受运维人员主观性影响,导致同一缺陷文本描述出现不同的严重程度评级。专业知识的差异也导致诊断分析差异和诊断效率不同。为提升缺陷诊断的准确性和效率,提出一种基于图神经网络的缺陷文... 电力系统中不同装置设备的缺陷评级和分析处理常受运维人员主观性影响,导致同一缺陷文本描述出现不同的严重程度评级。专业知识的差异也导致诊断分析差异和诊断效率不同。为提升缺陷诊断的准确性和效率,提出一种基于图神经网络的缺陷文本评级分类方法和大模型智能诊断分析助手。构建专业词典,使用自然语言处理算法规范化文本描述。通过统计方法,优化缺陷文本的语义表示。集成图注意力神经网络和RoBERTa模型对缺陷文本进行精确评级分类。基于大语言模型Qwen1.5-14B-Chat进行低秩适配(LoRA)微调训练得到电力设备诊断大模型Qwen-ElecDiag,结合检索增强生成技术开发设备缺陷诊断助手。此外,整理提供微调电力设备诊断大模型的指令数据集。对比实验结果表明,提出的基于图神经网络的缺陷评级分类方法在准确性上较最优基准模型BERT提升近8个百分点;诊断助手的电力知识以及缺陷诊断能力得到提升。通过提高缺陷评级的准确率并提供全面专业化诊断建议,不仅提高电力设备运维的智能化水平,也为其他垂直领域的智能运维提供新的解决方案。 展开更多
关键词 电力系统 缺陷诊断 图神经网络 大语言模型 低秩适配(LoRA)微调 检索增强生成 智能运维
在线阅读 下载PDF
结合区块链的园区综合能源系统可信协调优化方法 被引量:4
4
作者 王桂兰 曾康为 +1 位作者 刘宏 张海晓 《电力系统保护与控制》 EI CSCD 北大核心 2024年第7期168-178,共11页
分布式能源的日益普及与随之而来更复杂的能源系统结构,极大地增加了传统集中式求解能源协同优化问题的难度与成本。分布式优化方法与复杂的能源结构有良好的适配性,但缺少天然可信的协调中心,存在主体隐私保护困难、主体间交互数据真... 分布式能源的日益普及与随之而来更复杂的能源系统结构,极大地增加了传统集中式求解能源协同优化问题的难度与成本。分布式优化方法与复杂的能源结构有良好的适配性,但缺少天然可信的协调中心,存在主体隐私保护困难、主体间交互数据真伪难辨等问题,因此提出了结合区块链的园区综合能源系统可信协调优化方法。首先,引入协调者角色组成协调委员会,并利用无偏随机排序算法选取协调者。之后,通过分解协调算法将协调优化问题解耦为上下两层的求解最优值问题,并利用区块链共识算法保障多协调者间可信。然后,设计了双区块链园区综合能源系统数据存储模型,保证数据安全和交易链效率。最后,仿真实验表明结合区块链的园区综合能源系统可信协调优化方法可公平选取协调者,有效实现园区综合能源协同优化、降低节点作恶影响、保护数据隐私,具有较好的鲁棒性和容错性。 展开更多
关键词 综合能源系统 多主体 区块链 能源协同 协调者
在线阅读 下载PDF
混合动作空间下的多设备边缘计算卸载方法
5
作者 张冀 齐国梁 +1 位作者 朵春红 龚雯雯 《计算机工程与应用》 CSCD 北大核心 2024年第10期301-310,共10页
为降低多设备多边缘服务器场景中设备层级的总成本,并解决现有深度强化学习(deep reinforcement learning,DRL)只支持单一动作空间的算法局限性,提出基于混合决策的多智能体深度确定性策略梯度方法(hybrid-based multi-agent deep deter... 为降低多设备多边缘服务器场景中设备层级的总成本,并解决现有深度强化学习(deep reinforcement learning,DRL)只支持单一动作空间的算法局限性,提出基于混合决策的多智能体深度确定性策略梯度方法(hybrid-based multi-agent deep determination policy gradient,H-MADDPG)。首先考虑物联网设备/服务器计算能力随负载的动态变化、时变的无线传输信道增益、能量收集的未知性、任务量不确定性多种复杂的环境条件,建立MEC系统模型;其次以一段连续时隙内综合时延、能耗的总成本最小作为优化目标建立问题模型;最后将问题以马尔科夫决策过程(Markov decision procession,MDP)的形式交付给H-MADDPG,在价值网络的辅助下训练并行的两个策略网络,为设备输出离散的服务器选择及连续的任务卸载率。实验结果表明,H-MADDPG方法具有良好的收敛性和稳定性,从计算任务是否密集、延迟是否敏感等不同角度进行观察,H-MADDPG系统整体回报优于Local、OffLoad和DDPG,在计算密集型的任务需求下也能保持更大的系统吞吐量。 展开更多
关键词 物联网(IoT) 边缘计算卸载 多智能体深度确定性策略梯度(MADDPG) 混合动作空间
在线阅读 下载PDF
基于RFCARep-YOLOv8n的光伏电池缺陷检测算法 被引量:2
6
作者 张冀 王文彬 余洋 《计算机工程与应用》 北大核心 2025年第3期131-143,共13页
针对光伏电池缺陷图像存在目标遮掩、复杂背景以及人眼难以分辨的小目标缺陷等问题,提出一种基于感受野坐标注意力和重参数的YOLOv8n光伏电池缺陷检测算法,简记为RFCARep-YOLOv8n。提出一种基于感受野坐标注意力的重参数模块代替瓶颈模... 针对光伏电池缺陷图像存在目标遮掩、复杂背景以及人眼难以分辨的小目标缺陷等问题,提出一种基于感受野坐标注意力和重参数的YOLOv8n光伏电池缺陷检测算法,简记为RFCARep-YOLOv8n。提出一种基于感受野坐标注意力的重参数模块代替瓶颈模块进行特征提取,扩大对全局信息的关注度提高语义表达能力,抑制遮掩物和复杂背景的干扰;在快速空间金字塔池化后添加可分离大核聚集模块,通过提高长距离特征依赖增强全局特征信息融合;在特征融合部分使用多尺度序列特征融合颈部网络,结合多尺度辅助检测头,减少细节特征丢失,提高小目标缺陷检测能力。实验结果表明,该模型在PASCAL VOC数据集中较基准模型mAP@0.5和mAP@0.5:0.95分别提升2.3和2.1个百分点,同时在光伏缺陷数据集中mAP@0.5达到87.6%,较基准模型提升3.5个百分点,参数量为3.23×10^(6),保持了基准模型的轻量参数同时提高检测性能。 展开更多
关键词 光伏缺陷 YOLOv8n 感受野注意力 特征融合 重参数
在线阅读 下载PDF
自适应采样与重影多尺度特征融合的轻量化焊缝缺陷检测
7
作者 鲁斌 杨烜 +1 位作者 杨振宇 高啸天 《系统仿真学报》 北大核心 2025年第8期1978-1990,共13页
为提升焊接缺陷识别的准确率和速度,并实现模型的轻量化,提出了一种基于YOLOv8的轻量化焊缝缺陷检测网络LAW-YOLO(light adaptive-weight sampling-YOLO)。设计了一种轻量级自适应权重采样LAWS模块,通过学习感受野区域内交互的特征来构... 为提升焊接缺陷识别的准确率和速度,并实现模型的轻量化,提出了一种基于YOLOv8的轻量化焊缝缺陷检测网络LAW-YOLO(light adaptive-weight sampling-YOLO)。设计了一种轻量级自适应权重采样LAWS模块,通过学习感受野区域内交互的特征来构建自适应权重注意力特征图。采用优化的高效加权双向特征金字塔网络作为LAW-YOLO中的特征提取网络,设计重影多尺度采样模块并引用了混合注意力机制,以增强对小目标缺陷的检测能力。实验结果表明:该方法在SteelTube数据集中mAP0.5达到97.6%,处理数据速度可达91帧/s,比基线模型提高了5.5%的平均精度及4.6%的处理速度,在保持高效性能的同时减少了25.3%的计算量和50%的模型大小,更便于部署在边缘设备上进行场景作业。 展开更多
关键词 缺陷检测 YOLOv8 重影多尺度卷积 感受野空间特征 混合注意力机制
在线阅读 下载PDF
高低频特征融合的低照度图像增强方法
8
作者 王德文 胡旺盛 +1 位作者 张润磊 赵文清 《智能系统学报》 北大核心 2025年第3期641-648,共8页
针对现有低照度图像增强方法中性能与开销不平衡的问题,本文提出一种高低频特征融合的低照度图像增强方法。该方法在多尺度上提取几何特征丰富的低频特征与语义特征丰富的高频特征,经过高低频特征融合得到增强图像,在保证良好图像质量... 针对现有低照度图像增强方法中性能与开销不平衡的问题,本文提出一种高低频特征融合的低照度图像增强方法。该方法在多尺度上提取几何特征丰富的低频特征与语义特征丰富的高频特征,经过高低频特征融合得到增强图像,在保证良好图像质量的同时降低开销。为提升低照度环境下的特征提取能力,构建残差混合注意力模块,从像素与通道两方面对重要的局部区域给予更多关注。针对下采样导致的信息丢失问题,提出一种特征合并模块对下采样后的特征进行特征补充。此外,通过多级残差密集连接模块增强特征复用能力。在SID(see-in-the-dark)数据集上的实验表明,该方法峰值信噪比和结构相似度分别达到29.67和0.792,模型参数量仅为1.5×10^(6)。 展开更多
关键词 低照度 图像增强 高频特征 低频特征 特征融合 注意力 多尺度 残差网络 密集连接
在线阅读 下载PDF
基于双重注意力时间卷积长短期记忆网络的短期负荷预测
9
作者 李丽芬 张近月 +1 位作者 曹旺斌 梅华威 《系统仿真学报》 北大核心 2025年第8期2004-2015,共12页
为提高负荷预测的精度,充分提取负荷与其他特征因素之间的隐藏关系,提出一种基于双重注意力时间卷积长短期记忆网络(dual-attention temporal convolutional LSTM network,DATCLSNet)的负荷预测方法。基于最大信息系数法对数据集进行相... 为提高负荷预测的精度,充分提取负荷与其他特征因素之间的隐藏关系,提出一种基于双重注意力时间卷积长短期记忆网络(dual-attention temporal convolutional LSTM network,DATCLSNet)的负荷预测方法。基于最大信息系数法对数据集进行相关性分析,完成特征筛选以减少模型的计算量,采用滑动窗构建模型的输入。构建DA-TCLSNet预测模型,时间卷积层提取不同时间尺度下的依赖关系、挖掘负荷及天气等数据之间的非线性特征;多头稀疏自注意力层关注重要信息;长短期记忆网络层挖掘时间序列的长期依赖关系;时间模式注意力层实现自适应学习同一时间步上不同变量间的联系,并通过残差结构连接上述模块以提高模型的表达能力。实验结果表明:该方法相比于其他负荷预测方法具有更佳的预测性能。 展开更多
关键词 负荷预测 时间卷积网络 注意力 残差结构 相关性分析
在线阅读 下载PDF
基于动态储位分配策略的自动化立库多目标优化
10
作者 陈娟 郑旺 +1 位作者 刘倩倩 鲁斌 《系统仿真学报》 北大核心 2025年第6期1435-1448,共14页
基于动态储位分配策略,以整库为优化主体,以满足安全性、合理性的货位分配目标,以满足各堆垛机作业时间最短、作业能耗最低的调度目标,构建二阶段优化模型。上下层均为典型多目标优化问题,上层模型的理想解将作为下层模型的初始条件。... 基于动态储位分配策略,以整库为优化主体,以满足安全性、合理性的货位分配目标,以满足各堆垛机作业时间最短、作业能耗最低的调度目标,构建二阶段优化模型。上下层均为典型多目标优化问题,上层模型的理想解将作为下层模型的初始条件。采用多目标遗传算法求解优化模型的理想解,并通过熵权法对各个目标分配权重。结果表明:在货物离散排布状态下动静态分配策略无明显差异,但聚合排布状态下动态分配策略对货位分配与堆垛机调度的综合优化效果明显优于静态分配,且货物质量影响整体优化效果;大质量情况下安全性优化效果更为显著而较小质量情况下合理性与堆垛机调度优化效果更为明显。 展开更多
关键词 自动化立体库 货位分配 调度优化 多目标优化 多目标遗传算法
在线阅读 下载PDF
结合倒残差自注意力机制的遥感图像目标检测
11
作者 赵文清 赵振寰 巩佳潇 《智能系统学报》 北大核心 2025年第1期64-72,共9页
针对遥感图像目标检测存在背景信息干扰严重、待检测目标尺寸差异大等问题,提出一种结合倒残差自注意力机制的目标检测方法。首先,使用具有强特征提取能力的倒残差自注意力机制骨干网络充分提取目标特征,降低复杂背景信息的干扰;其次,... 针对遥感图像目标检测存在背景信息干扰严重、待检测目标尺寸差异大等问题,提出一种结合倒残差自注意力机制的目标检测方法。首先,使用具有强特征提取能力的倒残差自注意力机制骨干网络充分提取目标特征,降低复杂背景信息的干扰;其次,构造多尺度空间金字塔池化模块,提供多尺度感受野,增强捕捉不同尺寸目标的能力;最后,提出轻量级特征融合模块,对骨干网络提取的特征图进行融合,充分结合低层与高层特征,提高网络对不同尺寸目标的检测能力。与传统网络及其他改进目标检测算法进行对比,实验发现该方法的检测精度明显优于其他算法。此外,在DIOR数据集和RSOD数据集上设计消融实验,结果表明,该方法在DIOR数据集与RSOD数据集上的平均精度均值比YOLOv8算法分别提升4.6和4.2百分点,明显提升遥感图像目标检测的精度。 展开更多
关键词 遥感图像 目标检测 倒残差 自注意力机制 多尺度 空间金字塔 特征提取 特征融合
在线阅读 下载PDF
基于轻量化改进ERNIE-RCNN的中文新闻标题分类
12
作者 李莉 张之欣 王小龙 《科学技术与工程》 北大核心 2025年第2期649-656,共8页
针对大型预训练语言模型在处理新闻标题时,面临参数规模庞大、无法高效利用上下文语意特征以及循环卷积神经网络对初始输入元素重要性忽视的问题,提出了一种融合混合专家模型(mixture-of-expert,MoE)的ERNIE与注意力机制的循环卷积神经... 针对大型预训练语言模型在处理新闻标题时,面临参数规模庞大、无法高效利用上下文语意特征以及循环卷积神经网络对初始输入元素重要性忽视的问题,提出了一种融合混合专家模型(mixture-of-expert,MoE)的ERNIE与注意力机制的循环卷积神经网络(recurrent convolutional neural networks,RCNN)的新闻标题分类方法。首先,借助MoE改进ERNIE技术进行文本编码,随后利用注意力RCNN在保留文本词序和特征的基础上进行分类。为提高分类能力,通过计算输入的融合上下文权重对RCNN进行改进。在计算MoE中各个专家权重的过程中,选择Gumbel_Softmax作为新型的门控函数以改进传统的Softmax函数,从而更好地控制平滑程度。根据实验结果,发现相较于传统的分类方法,本文研究提出的分类方法展现出显著优势,极大地减少了参数数量。在此基础上,F_(1)相较于传统模型提升了0.51%。经过消融实验的验证,该分类方法在分类任务上的可行性得到了证实。 展开更多
关键词 混合专家系统 知识增强语义表示模型 注意力机制 循环卷积神经网络 文本分类
在线阅读 下载PDF
基于TR-YOLOv5的绝缘子异常检测算法研究
13
作者 潘卫华 吕青苗 苏攀 《计算机应用与软件》 北大核心 2025年第8期263-272,共10页
为实现绝缘子异常的准确识别和定位,提出一种改进轻量级网络模型YOLOv5的绝缘子状态异常检测方法(TR-YOLOv5)。该文利用基于自注意力机制的Transformer-Encoder模块改进特征提取网络以提高模型的检测精度;新增一个针对小目标的预测层,... 为实现绝缘子异常的准确识别和定位,提出一种改进轻量级网络模型YOLOv5的绝缘子状态异常检测方法(TR-YOLOv5)。该文利用基于自注意力机制的Transformer-Encoder模块改进特征提取网络以提高模型的检测精度;新增一个针对小目标的预测层,并利用K-means聚类算法设计目标锚框参数,为后续特征融合提供更多低层特征信息;采用EIoU作为损失函数,优化Loss值曲线,结合多尺度数据增强策略以实现目标的高精度定位。实验结果表明,TR-YOLOv5模型准确率可达94.2%,能够有效识别绝缘子异常目标。 展开更多
关键词 绝缘子检测 异常识别 YOLOv5模型 Transformer-Encoder 损失函数
在线阅读 下载PDF
基于自注意力和域自适应的风电机组异常状态检测
14
作者 王晓霞 郑肖剑 +2 位作者 柳璞 王荣康 王涛 《振动与冲击》 北大核心 2025年第10期269-277,310,共10页
针对新建风电机组历史数据不足及不同机组间数据分布差异大的问题,提出一种结合自注意力机制与域自适应网络的风电机组异常状态检测方法。首先,采用编码器-解码器结构对源域和目标域风电机组运行数据进行特征重构,以捕捉潜在的风电模式... 针对新建风电机组历史数据不足及不同机组间数据分布差异大的问题,提出一种结合自注意力机制与域自适应网络的风电机组异常状态检测方法。首先,采用编码器-解码器结构对源域和目标域风电机组运行数据进行特征重构,以捕捉潜在的风电模式和领域信息。然后,设计自注意力模块,通过与域判别器的对抗学习提取跨域共享特征,根据跨域信息的匹配度自动加权不同机组的领域信息,实现动态特征重构,从而提升模型对不同机组数据分布变化的适应性。最后,计算重构误差作为异常分数用于异常检测。实际风电机组运行数据的结果表明,该方法在历史数据有限的条件下能够高效地识别风机异常状态,相较于其他深度学习和深度迁移学习方法,显著提升了检测精度。 展开更多
关键词 风电机组 异常检测 域自适应 自注意力机制 对抗训练
在线阅读 下载PDF
基于随机对称搜索的进化强化学习算法
15
作者 邸剑 万雪 姜丽梅 《计算机工程与科学》 北大核心 2025年第5期912-920,共9页
进化算法的引入极大地提高了强化学习算法的性能。然而,现有的基于进化强化学习ERL的算法还存在易陷入欺骗性奖励、易收敛到局部最优和稳定性差的问题。为了解决这些问题,提出了一种随机对称搜索策略,直接作用于策略网络参数,在策略网... 进化算法的引入极大地提高了强化学习算法的性能。然而,现有的基于进化强化学习ERL的算法还存在易陷入欺骗性奖励、易收敛到局部最优和稳定性差的问题。为了解决这些问题,提出了一种随机对称搜索策略,直接作用于策略网络参数,在策略网络参数中心的基础上由最优策略网络参数指导全局策略网络参数优化更新,同时辅以梯度优化,引导智能体进行多元探索。在MuJoCo的5个机器人运动连续控制任务中的实验结果表明,提出的算法性能优于以前的进化强化学习算法,且具有更快的收敛速度。 展开更多
关键词 深度强化学习 进化算法 进化强化学习 随机对称搜索
在线阅读 下载PDF
屋顶光伏开发多主体决策演化与仿真
16
作者 陈娟 高江梅 +1 位作者 李哲 鲁斌 《全球能源互联网》 北大核心 2025年第2期201-215,共15页
以演化博弈模型为基础,考虑了屋顶光伏开发推进中户用、工商业和学校及政府机关不同屋顶光伏的主体收益关系,构建了演化博弈支付矩阵,选取华东地区五省一市,得到了各类光伏的主体最优投资决策,并对最优投资决策下的经济效益进行了分析... 以演化博弈模型为基础,考虑了屋顶光伏开发推进中户用、工商业和学校及政府机关不同屋顶光伏的主体收益关系,构建了演化博弈支付矩阵,选取华东地区五省一市,得到了各类光伏的主体最优投资决策,并对最优投资决策下的经济效益进行了分析。演化与仿真结果表明,受区域光照资源等资源禀赋差异的影响,投资决策和经济效益有所不同,区域应结合不同类型下的均衡情况因地制宜完善市场基础设施和市场机制,积极促进屋顶光伏开发的全面推进及可持续发展。 展开更多
关键词 屋顶光伏 多主体 四维演化博弈
在线阅读 下载PDF
基于YOLOv8的输电线路绝缘子表面缺陷识别算法 被引量:2
17
作者 熊伟 路鑫 +1 位作者 邱维进 王平强 《电子测量技术》 北大核心 2025年第2期178-188,共11页
针对当前绝缘子表面缺陷识别存在的图像背景复杂、缺陷小目标识别效果差的问题,提出一种基于YOLOv8的输电线路绝缘子表面缺陷识别算法。首先,在主干网络引入CAF模块,增强模型对复杂图像场景的解析,增强全局和局部特征的提取能力;其次,... 针对当前绝缘子表面缺陷识别存在的图像背景复杂、缺陷小目标识别效果差的问题,提出一种基于YOLOv8的输电线路绝缘子表面缺陷识别算法。首先,在主干网络引入CAF模块,增强模型对复杂图像场景的解析,增强全局和局部特征的提取能力;其次,在模型的颈部网络增加GD机制,减少特征融合过程中信息的丢失,提升小目标检测能力;最后,采用ATFL分类损失函数,削弱复杂背景对小目标检测的干扰,引入PIOU边界框损失函数,提高识别精度,加快模型收敛速度。实验结果表明,该算法的mAP50达到94.1%,精确率达到92.5%,召回率达到91.3%,相较于基线模型分别提高了3.1%、0.7%、3.9%,且综合性能优于最近的YOLOv9s、YOLOv10s等代表性算法。 展开更多
关键词 目标检测 绝缘子表面缺陷识别 小目标 卷积和注意力融合 边界框损失函数 分类损失函数
在线阅读 下载PDF
面向边缘设备的目标检测模型研究
18
作者 徐伟峰 雷耀 +1 位作者 王洪涛 张旭 《智能系统学报》 北大核心 2025年第4期871-881,共11页
现有目标检测模型在边缘设备上部署时,其检测性能和推理速度的平衡有较大提升空间。针对此问题,本文基于YOLO(you can only look once)v8提出一种可部署到多类边缘设备上的目标检测模型。在模型的骨干网络部分,设计了EC2f(extended coar... 现有目标检测模型在边缘设备上部署时,其检测性能和推理速度的平衡有较大提升空间。针对此问题,本文基于YOLO(you can only look once)v8提出一种可部署到多类边缘设备上的目标检测模型。在模型的骨干网络部分,设计了EC2f(extended coarse-to-fine)结构,在降低参数量和计算复杂度的同时降低数据读写量;在颈部网络部分,将颈部网络替换为YOLOv6-3.0版本的颈部网络,加速了模型推理,并将推理精度维持在较好水平;预测头网络部分设计了多尺度卷积检测头,进一步降低了模型的计算复杂度和参数度。设计了两个版本(n/s尺度)以适应不同的边缘设备。在X光数据集的实验表明,模型在推理精度上比同尺度的基准模型分别提升0.5/1.7百分点,推理速度上分别提升11.6%/11.2%。在其他数据集上的泛化性能测试表明,模型的推理速度提升了10%以上,精度降低控制在1.3%以内。实验证明,模型在推理精度和速度之间实现了良好的平衡。 展开更多
关键词 目标检测 YOLO 边缘设备 推理精度 推理速度 数据读写量 计算复杂度 模型部署
在线阅读 下载PDF
集多头点注意力与边卷积的点云分类分割模型
19
作者 熊伟 娄政浩 +1 位作者 徐敏夫 袁和金 《计算机辅助设计与图形学学报》 北大核心 2025年第3期446-456,共11页
针对动态图卷积模型只在局部尺度上独立提取点特征,未将局部点互相关联的问题,提出了一种集多头点注意力与边卷积的点云分类和分割模型.首先,设计单头点注意力模块分别计算点云的注意力特征与邻域注意力特征,学习点云的旋转不变性,使用... 针对动态图卷积模型只在局部尺度上独立提取点特征,未将局部点互相关联的问题,提出了一种集多头点注意力与边卷积的点云分类和分割模型.首先,设计单头点注意力模块分别计算点云的注意力特征与邻域注意力特征,学习点云的旋转不变性,使用多头机制将单头点注意力模块进行聚合,构建多头点注意力模块,赋予邻域内不同点相应的注意力系数;其次,设计加权金字塔池化模块进行特征融合,获得更加丰富的特征信息;最后,提出结合交叉熵损失和焦点损失的联合损失函数,解决数据集中存在的难分类样本和类别不平衡问题.在ModelNet40数据集和ShapeNet数据集上分别进行了点云分类与分割实验,在ModelNet40数据集上,所提模型的总体精度提升到了94.1%;在ShapeNet数据集上的平均交并比提升到了86.3%,有效地提升了模型的分类和分割性能. 展开更多
关键词 点云数据 分类与分割 多头点注意力 边卷积 特征融合 损失函数
在线阅读 下载PDF
基于改进YOLOx-s的无人机桥梁裂缝检测算法
20
作者 徐伟峰 吕航 +4 位作者 程子益 陆安文 王洪涛 王晏如 李昇 《吉林大学学报(理学版)》 北大核心 2025年第4期1091-1098,共8页
针对桥梁裂缝检测不充分的安全隐患问题,结合小型无人机平台提出一种基于YOLOx-s的桥梁裂缝检测算法.首先,在backbone中添加残差空洞卷积模块,以解决无人机图像尺度变化大、背景复杂的问题;其次,在PANET中添加坐标注意力机制模块,以提... 针对桥梁裂缝检测不充分的安全隐患问题,结合小型无人机平台提出一种基于YOLOx-s的桥梁裂缝检测算法.首先,在backbone中添加残差空洞卷积模块,以解决无人机图像尺度变化大、背景复杂的问题;其次,在PANET中添加坐标注意力机制模块,以提高小目标检测率;最后,替换损失函数为Focal loss,以加强正样本的学习,提高模型的稳定性.实验结果表明:该方法相比于YOLOx-s算法,检测精度提升了3.72个百分点;在嵌入式设备上,该方法比其他主流算法有更好的精度,且能实现实时性检测,可以更好地应用在无人机桥梁裂缝检测中. 展开更多
关键词 无人机 桥梁裂缝检测 目标检测 YOLOx-s算法 注意力机制
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部