期刊文献+
共找到41篇文章
< 1 2 3 >
每页显示 20 50 100
基于联邦增量学习的工业物联网数据共享方法 被引量:20
1
作者 刘晶 董志红 +2 位作者 张喆语 孙志刚 季海鹏 《计算机应用》 CSCD 北大核心 2022年第4期1235-1243,共9页
针对工业物联网(IIOT)新增数据量大、工厂子端数据量不均衡的问题,提出了一种基于联邦增量学习的IIOT数据共享方法(FIL-IIOT)。首先,将行业联合模型下发到工厂子端作为本地初始模型;然后,提出联邦优选子端算法来动态调整参与子集;最后,... 针对工业物联网(IIOT)新增数据量大、工厂子端数据量不均衡的问题,提出了一种基于联邦增量学习的IIOT数据共享方法(FIL-IIOT)。首先,将行业联合模型下发到工厂子端作为本地初始模型;然后,提出联邦优选子端算法来动态调整参与子集;最后,通过联邦增量学习算法计算出工厂子端的增量加权,从而使新增状态数据与原行业联合模型快速融合。实验结果表明,在美国凯斯西储大学(CWRU)轴承故障数据集上,所提FIL-IIOT使轴承故障诊断精度达到93.15%,比联邦均值(FedAvg)算法和无增量公式的FIL-IIOT(FIL-IIOT-NI)方法分别提高了6.18个百分点和2.59个百分点,满足了基于工业增量数据的行业联合模型持续优化的需求。 展开更多
关键词 工业物联网(IIOT) 联邦学习 增量学习 数据不均衡 优选子端
在线阅读 下载PDF
基于知识和数据融合驱动的设备故障诊断方法 被引量:10
2
作者 刘晶 高立超 +2 位作者 孙跃华 冯显宗 季海鹏 《郑州大学学报(理学版)》 北大核心 2022年第2期39-46,共8页
传统设备故障诊断方法通常基于单一的机理知识或运行数据,难以解决多复杂工况、多故障类型的设备故障问题。针对以上问题,提出了一种基于知识和数据融合驱动的设备故障诊断方法,从单纯依赖机理知识或运行数据到两者融合驱动,进一步形成... 传统设备故障诊断方法通常基于单一的机理知识或运行数据,难以解决多复杂工况、多故障类型的设备故障问题。针对以上问题,提出了一种基于知识和数据融合驱动的设备故障诊断方法,从单纯依赖机理知识或运行数据到两者融合驱动,进一步形成故障图谱诊断系统,不仅通过优化的双向长短时记忆网络模型对设备运行数据进行故障分类,而且可以展示详细故障信息以及相似故障。经实验分析验证,故障诊断准确率平均达到95.03%,同时系统通过基于融合故障链的知识图谱进行辅助决策,返回故障相关信息。对比传统分类模型准确率表现突出,并实现了机理知识与数据驱动相融合的设备故障领域图谱构建。 展开更多
关键词 知识图谱 特征提取 故障诊断 LSTM 融合分类
在线阅读 下载PDF
非独立同分布工业大数据下联邦动态加权学习方法 被引量:4
3
作者 刘晶 朱家豪 +1 位作者 袁闰萌 季海鹏 《计算机集成制造系统》 EI CSCD 北大核心 2023年第5期1602-1614,共13页
联邦学习在不交换本地数据的情况下可以完成多方协作训练,很好地解决了工业物联网领域数据隐私保护及共享问题。但是传统的联邦学习在面对非独立同分布的工业数据时,会因为局部模型更新导致模型的偏移。针对上述问题,提出非独立同分布... 联邦学习在不交换本地数据的情况下可以完成多方协作训练,很好地解决了工业物联网领域数据隐私保护及共享问题。但是传统的联邦学习在面对非独立同分布的工业数据时,会因为局部模型更新导致模型的偏移。针对上述问题,提出非独立同分布工业大数据下联邦动态加权学习方法,该方法分为局部更新和全局聚合两个阶段。在局部更新阶段,利用联邦距离算法消除偏移程度过大的局部模型的影响;在全局聚合阶段,提出动态加权算法,动态的给对全局模型更有利的局部数据分配更大的训练权重。该方法既考虑了局部更新导致的模型偏移程度问题,又兼顾了偏移局部模型对全局模型的影响。通过实验验证了该方法在面对非独立同分布的工业数据时具有良好的效果。 展开更多
关键词 工业物联网 隐私保护 联邦学习 非独立同分布数据
在线阅读 下载PDF
数据融合驱动的余热锅炉阀门调节方法 被引量:4
4
作者 刘晶 秦国帅 +2 位作者 孟德凯 贺伯君 季海鹏 《燕山大学学报》 CAS 北大核心 2021年第1期76-86,94,共12页
针对传统水泥熟料生产线上的余热锅炉阀门由人工进行调节,存在调节不及时、不稳定等问题,提出一种数据融合驱动的余热锅炉阀门调节方法。该方法主要基于AQC余热锅炉阀门调节历史数据驱动建模,以达到余热再利用的最大化。首先,针对冷风... 针对传统水泥熟料生产线上的余热锅炉阀门由人工进行调节,存在调节不及时、不稳定等问题,提出一种数据融合驱动的余热锅炉阀门调节方法。该方法主要基于AQC余热锅炉阀门调节历史数据驱动建模,以达到余热再利用的最大化。首先,针对冷风阀调节数据多变性和不平衡的问题,提出了基于过采样决策树的冷风阀调节预测模型;其次,针对入口阀和旁通阀的调节数据具有时序性特征,且强相关性等特点,提出了基于LSTM-BP共享权值神经网络的入口阀&旁通阀调节预测模型;最后,仿真实验结果表明,数据融合驱动的余热锅炉阀门调节方法可有效调节冷风阀、入口阀及旁通阀,并辅助人工决策。 展开更多
关键词 工业人工智能 余热发电 数据驱动 阀门调节
在线阅读 下载PDF
多模态课程学习知识图谱实体预测方法研究
5
作者 许智宏 郝雪梅 +2 位作者 王利琴 董永峰 王旭 《计算机科学与探索》 CSCD 北大核心 2024年第6期1590-1599,共10页
现有知识图谱实体预测方法一方面只利用邻域和图结构信息增强节点信息,忽略了知识图谱之外的多模态信息对于知识图谱信息的增强;另一方面正负样本对比训练模型时负样本随机排序导致训练效果不佳,且没有额外的信息帮助负样本的训练过程... 现有知识图谱实体预测方法一方面只利用邻域和图结构信息增强节点信息,忽略了知识图谱之外的多模态信息对于知识图谱信息的增强;另一方面正负样本对比训练模型时负样本随机排序导致训练效果不佳,且没有额外的信息帮助负样本的训练过程。为此,提出了一种多模态课程学习知识图谱实体预测模型(MMCL)。首先把多模态信息引入知识图谱实现信息增强,利用生成对抗网络(GAN)优化多模态信息融合过程,生成器生成的样本增强知识图谱信息,同时也提升鉴别器判别三元组真伪的能力;其次利用课程学习算法根据负样本的难易程度对负样本从易到难排序,通过步调函数分层次地把排序的负样本加入到训练过程中,更有利于发挥负样本鉴别三元组真伪的效果,同时无标签学习避免了训练后期假阴性问题;多模态信息融合互相优化的鉴别器与课程学习训练模型共享参数,帮助提升负样本的训练效果。在FB15k-237和WN18RR两个数据集上进行实验,结果表明,MMCL与基线模型相比,在平均倒数排名(MRR)、Hits@1、Hits@3以及Hits@10四个性能评价指标均有明显提升,验证了所提模型的有效性和可行性。 展开更多
关键词 课程学习 多模态 生成对抗网络(GAN) 负采样
在线阅读 下载PDF
基于关系特征强化的全景场景图生成方法
6
作者 李林昊 王逸泽 +2 位作者 李英双 董永峰 王振 《计算机应用》 北大核心 2025年第2期584-593,共10页
全景场景图生成(PSGG)旨在识别图像中所有对象并自动地捕获所有对象间的语义关联关系。语义关联关系建模依赖目标对象及对象对(subject-object pair)的特征描述,然而现行工作中存在以下不足:采用边界框提取方式获取的对象特征较模糊;仅... 全景场景图生成(PSGG)旨在识别图像中所有对象并自动地捕获所有对象间的语义关联关系。语义关联关系建模依赖目标对象及对象对(subject-object pair)的特征描述,然而现行工作中存在以下不足:采用边界框提取方式获取的对象特征较模糊;仅关注对象的语义和空间位置特征,忽略了对关系预测同样重要的对象对的语义联合特征和相对位置特征;未能针对不同类型的对象对(如前景-前景、前景-背景、背景-背景)进行差异化特征提取,进而忽略了它们之间的差异性。针对上述问题,提出一种基于关系特征强化的全景场景图生成方法(RFE)。首先,通过引入像素级掩码区域特征,丰富对象特征的细节信息,同时有效地融合对象对的联合视觉特征、语义联合特征和相对位置特征;其次,根据对象对的不同类型,自适应地选择最适合本类型对象对的特征提取方式;最后,获得强化后更精确的关系特征用于关系预测。在PSG数据集上的实验结果表明,以VCTree(Visual Contexts Tree)、Motifs、IMP(Iterative Message Passing)和GPSNet为基线方法,ResNet-101为骨干网络,RFE在具有挑战性的SGGen任务上召回率(R@20)指标分别提高了4.37、3.68、2.08和1.80个百分点,验证了所提方法在PSGG的有效性。 展开更多
关键词 全景场景图生成 对象对联合特征 关系特征强化 语义关联关系 自适应选择
在线阅读 下载PDF
基于关联信息增强与关系平衡的场景图生成方法
7
作者 李林昊 韩冬 +2 位作者 董永峰 李英双 王振 《计算机应用》 北大核心 2025年第3期953-962,共10页
利用场景图的上下文信息可以帮助模型理解目标之间的关联作用;然而,大量不相关的目标可能带来额外噪声,进而影响信息交互,造成预测偏差。在嘈杂且多样的场景中,即使几个简单的关联目标,也足够推断目标所处的环境信息,并消除其他目标的... 利用场景图的上下文信息可以帮助模型理解目标之间的关联作用;然而,大量不相关的目标可能带来额外噪声,进而影响信息交互,造成预测偏差。在嘈杂且多样的场景中,即使几个简单的关联目标,也足够推断目标所处的环境信息,并消除其他目标的歧义信息。此外,在面对真实场景中的长尾偏差数据时,场景图生成(SGG)的性能难以令人满意。针对上下文信息增强和预测偏差的问题,提出一种基于关联信息增强与关系平衡的SGG(IERB)方法。IERB方法采用一种二次推理结构,即根据有偏场景图的预测结果重新构建不同预测视角下的关联信息并平衡预测偏差。首先,聚焦不同视角下的强相关目标以构建上下文关联信息;其次,利用树型结构的平衡策略增强尾部关系的预测能力;最后,采用一种预测引导方式在已有场景图的基础上预测优化。在通用的数据集Visual Genome上的实验结果表明,与3类基线模型VTransE(Visual Translation Embedding network)、Motif和VCTree(Visual Context Tree)相比,所提方法在谓词分类(PredCls)任务下的均值召回率mR@100分别提高了11.66、13.77和13.62个百分点,验证了所提方法的有效性。 展开更多
关键词 场景图生成 信息增强 有偏预测 关系平衡 预测优化
在线阅读 下载PDF
基于路径和增强三元组文本的开放世界知识推理模型
8
作者 王利琴 耿智雷 +2 位作者 李英双 董永峰 边萌 《计算机应用》 北大核心 2025年第4期1177-1183,共7页
传统的基于表示学习的知识推理方法只能用于封闭世界的知识推理,有效进行开放世界的知识推理是目前的热点问题。因此,提出一种基于路径和增强三元组文本的开放世界知识推理模型PEOR(Path and Enhanced triplet text for Open world know... 传统的基于表示学习的知识推理方法只能用于封闭世界的知识推理,有效进行开放世界的知识推理是目前的热点问题。因此,提出一种基于路径和增强三元组文本的开放世界知识推理模型PEOR(Path and Enhanced triplet text for Open world knowledge Reasoning)。首先,使用由实体对间结构生成的多条路径和单个实体周围结构生成的增强三元组,其中路径文本通过拼接路径中的三元组文本得到,而增强三元组文本通过拼接头实体邻域文本、关系文本和尾实体邻域文本得到;其次,使用BERT(Bidirectional Encoder Representations from Transformers)分别编码路径文本和增强三元组文本;最后,使用路径向量和三元组向量计算语义匹配注意力,再使用语义匹配注意力聚合多条路径的语义信息。在3个开放世界知识图谱数据集WN18RR、FB15k-237和NELL-995上的对比实验结果表明,与次优模型BERTRL(BERT-based Relational Learning)相比,所提模型的命中率(Hits@10)指标分别提升了2.6、2.3和8.5个百分点,验证了所提模型的有效性。 展开更多
关键词 知识图谱 文本信息 预训练语言模型 开放世界知识推理 注意力机制
在线阅读 下载PDF
基于元学习的标签噪声自适应学习算法
9
作者 齐巧玲 王啸啸 +2 位作者 张茜茜 汪鹏 董永峰 《计算机应用》 北大核心 2025年第7期2113-2122,共10页
图像分类需要收集大量的图片进行模型训练与优化,但收集过程会不可避免地带来噪声标签。为了应对这一挑战,鲁棒性分类方法应运而生。在目前的鲁棒性分类方法中,超参数的设置需要手动调节,对人力物力带来了大量的损耗。因此,提出元超参... 图像分类需要收集大量的图片进行模型训练与优化,但收集过程会不可避免地带来噪声标签。为了应对这一挑战,鲁棒性分类方法应运而生。在目前的鲁棒性分类方法中,超参数的设置需要手动调节,对人力物力带来了大量的损耗。因此,提出元超参数调节器(MHA),采用双层嵌套循环优化的方法自适应地学习噪声感知的超参数组合,并提出Meta-FPL(Feature Pseudo-Label adaptive learning based on Meta learning)算法。此外,为了解决元训练阶段的反向传播过程耗费大量GPU算力的问题,提出选择激活元模型层(SAML)策略。该策略通过比较虚拟训练阶段反向传播的平均梯度与元梯度的大小,限制部分元模型层的更新,从而有效提升模型的训练效率。在4个基准数据集和1个真实数据集上的实验结果表明,与MLC(Meta Label Correction for noisy label learning)、CTRR(ConTrastive RegulaRization)和FPL(Feature Pseudo-Label)算法相比,Meta-FPL算法的分类准确率较高。此外,引入SAML策略后,在元训练阶段的反向传播过程训练时长缩短了79.52%。可见,Meta-FPL算法能在较短的训练时间内有效提升分类测试准确率。 展开更多
关键词 深度学习 深度神经网络 图像分类 标签噪声 元学习
在线阅读 下载PDF
基于增量学习的发酵过程产物浓度动态预测方法
10
作者 刘晶 杨乐言 +1 位作者 季海鹏 夏建业 《计算机集成制造系统》 北大核心 2025年第2期524-533,共10页
针对实际发酵过程中不同批次之间的差异性导致产物浓度的在线预测精度不稳定的问题,提出一种基于增量学习的发酵过程产物浓度动态预测方法,并提出基于特征降维的相似度计算模块,对历史样本与新增样本进行特征降维,从历史样本中选取与新... 针对实际发酵过程中不同批次之间的差异性导致产物浓度的在线预测精度不稳定的问题,提出一种基于增量学习的发酵过程产物浓度动态预测方法,并提出基于特征降维的相似度计算模块,对历史样本与新增样本进行特征降维,从历史样本中选取与新增样本相似的样本填充新增样本集,解决发酵过程新增标签样本少的问题;提出基于增量学习的自适应更新模块,通过计算新增样本与模型训练样本的损失梯度来更新模型参数,使模型在新增标签样本少的情况下具备快速自适应更新的能力;在青霉素公开数据集IndPenSim上进行实验,验证了该方法在不同批次发酵数据上的预测性能。 展开更多
关键词 发酵过程 软测量 增量学习 自适应
在线阅读 下载PDF
基于PB-DBSCAN的GPS数据去噪 被引量:2
11
作者 汪鹏 刘泽玲 +1 位作者 王利琴 董永峰 《计算机工程与设计》 北大核心 2021年第3期678-683,共6页
针对公交车GPS数据量大、数据密度不均匀、噪声点多等问题,提出PB-DBSCAN(pixel_based-DBSCAN,PB-DBSCAN)算法。将聚类过程中判断数据点之间的关系改为判断像素格之间的关系,减小数据点邻域中的搜索范围,加快聚类速度。因公交线路的多样... 针对公交车GPS数据量大、数据密度不均匀、噪声点多等问题,提出PB-DBSCAN(pixel_based-DBSCAN,PB-DBSCAN)算法。将聚类过程中判断数据点之间的关系改为判断像素格之间的关系,减小数据点邻域中的搜索范围,加快聚类速度。因公交线路的多样性,同一聚类参数无法适应所有线路,提出一种动态参数选择的方法。在石家庄公交车GPS实际数据集上进行实验,其结果表明,PB-DBSCAN可以有效识别并过滤GPS数据集中的噪声点,实现快速聚类。与采用固定参数的算法进行比较,参数的动态选择提高了聚类准确度。 展开更多
关键词 GPS轨迹数据 基于像素格的快速密度聚类 动态参数选择 像素格 去噪
在线阅读 下载PDF
基于工业物联网的区块链多目标优化 被引量:11
12
作者 刘晶 张喆语 +1 位作者 董志红 季海鹏 《计算机集成制造系统》 EI CSCD 北大核心 2021年第8期2382-2392,共11页
针对区块链落地工业物联网时吞吐率低、部署开销大的问题,提出一种基于工业物联网的区块链多目标优化方法对吞吐率与通讯开销进行平衡。该方法首先随机拟合原始数据,并根据二进制交叉、多项式变异生成原始父种群,然后提出自选精英保留... 针对区块链落地工业物联网时吞吐率低、部署开销大的问题,提出一种基于工业物联网的区块链多目标优化方法对吞吐率与通讯开销进行平衡。该方法首先随机拟合原始数据,并根据二进制交叉、多项式变异生成原始父种群,然后提出自选精英保留策略的快速非支配排序算法来寻找精英解集,最后通过迭代算法计算出最优区块链节点数。实验分析验证,改进算法通过解决伪支配点问题提高了算法敛散性,使区块链吞吐率显著提升,部署通讯开销明显下降,满足区块链落地的工业物联网需求。 展开更多
关键词 工业物联网 区块链 多目标优化 吞吐率 通讯开销
在线阅读 下载PDF
基于融合驱动的余热阀门控制优化方法 被引量:5
13
作者 刘晶 李超然 +1 位作者 张建楠 赵佳 《热力发电》 CAS CSCD 北大核心 2023年第10期176-186,共11页
传统余热阀门控制技术主要分为机理建模和数据驱动2种方法,但在实际的应用中前者因机理复杂,难以准确描述,后者要求数据质量高、工况样本全,难以短时间满足。针对上述问题,提出一种基于融合驱动的余热阀门控制优化方法,该方法首先融合... 传统余热阀门控制技术主要分为机理建模和数据驱动2种方法,但在实际的应用中前者因机理复杂,难以准确描述,后者要求数据质量高、工况样本全,难以短时间满足。针对上述问题,提出一种基于融合驱动的余热阀门控制优化方法,该方法首先融合机理知识与数据知识构建基于模糊集合的知识图谱模型,将阀门开度知识实体化;其次,建立基于时间保护机制的长短时记忆(long short-term memory,LSTM)神经网络阀门开度优化模型,并提出时间保护机制算法,确定阀门最优调节频率;最后,通过知识推理得到推荐阀门开度。经实验分析验证,该方法通过融合余热回收机理等定性知识和设备运行数据等定量知识,在提升设备安全性的同时,产生的高温饱和蒸汽焓值提升概率为94%,平均每天可提升8640 kJ,实现了余热回收阀门开度的智慧决策。 展开更多
关键词 融合驱动 余热回收 阀门控制 知识图谱 LSTM神经网络
在线阅读 下载PDF
融合注意力机制与联合优化的表面缺陷检测 被引量:5
14
作者 董永峰 孙松毅 +1 位作者 王振 刘晶 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2024年第1期102-111,共10页
两段式缺陷检测模型中分割和分类网络的优化目标不一致,导致二者耦合性较差,且分割模块误差的积累可能进一步弱化分类模块的性能.针对上述问题,提出一种基于注意力机制的缺陷检测联合优化算法.首先基于混合注意力特征融合模块的分割网... 两段式缺陷检测模型中分割和分类网络的优化目标不一致,导致二者耦合性较差,且分割模块误差的积累可能进一步弱化分类模块的性能.针对上述问题,提出一种基于注意力机制的缺陷检测联合优化算法.首先基于混合注意力特征融合模块的分割网络融合浅层特征和深层特征,提取更全面的缺陷位置信息;然后基于多感受野空间注意力模块的分类网络挖掘更具判别性的缺陷类别特征;最后通过联合优化目标实现分割和分类网络的学习优化,提升整个算法的耦合性以及性能.基于PyTorch框架,在公开工业缺陷检测数据集DAGM 2007, MAGNETIC-TILE和KolektorSDD2数据集上进行实验,并引入分段式算法及类U-Net算法进行横向对比的结果表明,所提算法的准确率相比分段式算法最高提升28.02%,相比类U-Net算法最高提升8.3%,且精确率、召回率、F1值均优于同类算法,具有更好的检测性能. 展开更多
关键词 深度学习 特征融合 缺陷检测 注意力机制
在线阅读 下载PDF
不完整多视图聚类综述 被引量:1
15
作者 董瑶 付怡雪 +2 位作者 董永峰 史进 陈晨 《计算机应用》 CSCD 北大核心 2024年第6期1673-1682,共10页
多视图聚类是近年来图数据挖掘领域的研究热点。由于数据采集技术的限制或人为因素等原因常导致视图或样本缺失问题。降低多视图的不完整性对聚类效果的影响是多视图聚类目前面临的重大挑战。因此,综合研究不完整多视图聚类(IMC)近年的... 多视图聚类是近年来图数据挖掘领域的研究热点。由于数据采集技术的限制或人为因素等原因常导致视图或样本缺失问题。降低多视图的不完整性对聚类效果的影响是多视图聚类目前面临的重大挑战。因此,综合研究不完整多视图聚类(IMC)近年的发展具有重要的理论意义和实践价值。首先,归纳分析不完整多视图数据缺失类型;其次,详细比较基于多核学习(MKL)、矩阵分解(MF)学习、深度学习和图学习这4类IMC方法,分析代表性方法的技术特点和区别;再次,从数据集类型、视图和类别数量、应用领域等角度总结22个公开不完整多视图数据集;继次,总结评价指标,并系统分析现有不完整多视图聚类方法在同构和异构数据集上的性能表现;最后,归纳分析不完整多视图聚类目前存在的问题、未来的发展方向和现有应用领域。 展开更多
关键词 不完整性 多视图聚类 图数据挖掘 缺失视图 多视图学习
在线阅读 下载PDF
融合先验知识和字形特征的中文命名实体识别 被引量:1
16
作者 董永峰 白佳明 +1 位作者 王利琴 王旭 《计算机应用》 CSCD 北大核心 2024年第3期702-708,共7页
针对命名实体识别(NER)任务中相关模型通常仅对字符及相关词汇进行建模,未充分利用汉字特有的字形结构信息和实体类型信息的问题,提出一种融合先验知识和字形特征的命名实体识别模型。首先,采用结合高斯注意力机制的Transformer对输入... 针对命名实体识别(NER)任务中相关模型通常仅对字符及相关词汇进行建模,未充分利用汉字特有的字形结构信息和实体类型信息的问题,提出一种融合先验知识和字形特征的命名实体识别模型。首先,采用结合高斯注意力机制的Transformer对输入序列进行编码,并从中文维基百科中获取实体类型的中文释义,采用双向门控循环单元(BiGRU)编码实体类型信息作为先验知识,利用注意力机制将它与字符表示进行组合;其次,采用双向长短时记忆(BiLSTM)网络编码输入序列的远距离依赖关系,通过字形编码表获得繁体的仓颉码和简体的现代五笔码,采用卷积神经网络(CNN)提取字形特征表示,并根据不同权重组合繁体与简体字形特征,利用门控机制将它与经过BiLSTM编码后的字符表示进行组合;最后,使用条件随机场(CRF)解码,得到命名实体标注序列。在偏口语化的数据集Weibo、小型数据集Boson和大型数据集PeopleDaily上的实验结果表明,与基线模型MECT(Multi-metadata Embedding based Cross-Transformer)相比,所提模型的F1值别提高了2.47、1.20和0.98个百分点,验证了模型的有效性。 展开更多
关键词 命名实体识别 注意力机制 卷积神经网络 双向长短时记忆 条件随机场
在线阅读 下载PDF
融合实体语义及结构信息的知识图谱推理 被引量:1
17
作者 王利琴 张特 +2 位作者 许智宏 董永峰 杨国伟 《计算机应用》 CSCD 北大核心 2024年第11期3371-3378,共8页
目前,图注意力网络(GAT)通过引入注意力机制对目标实体的邻域实体赋予不同权重并进行信息聚合,使得它更关注实体的局部邻域,忽略了图结构中实体和关系之间的拓扑结构;而且在多头注意力后将输出嵌入向量简单拼接或平均,导致注意力头之间... 目前,图注意力网络(GAT)通过引入注意力机制对目标实体的邻域实体赋予不同权重并进行信息聚合,使得它更关注实体的局部邻域,忽略了图结构中实体和关系之间的拓扑结构;而且在多头注意力后将输出嵌入向量简单拼接或平均,导致注意力头之间相互独立,未能捕捉不同注意力头的重要语义信息。针对GAT应用于知识图谱(KG)推理任务时未充分挖掘实体结构信息和语义信息的问题,提出融合实体语义及结构信息的知识图谱推理(FESSI)模型。首先,使用TransE将实体和关系表示为同一空间的嵌入向量。其次,提出交互注意力机制,将GAT中多头注意力重新融合成多个混合注意力,增强注意力头之间的交互性,以提取目标实体更丰富的语义信息;同时,利用关系图卷积网络(R-GCN)提取实体的结构信息,并通过权重矩阵学习GAT和R-GCN的输出特征向量。最后,使用ConvKB作为解码器进行评分。在知识图谱数据集Kinship、NELL-995和FB15K-237上的实验结果表明,FESSI模型的效果优于多数对比模型,在3个数据集的平均倒数排名(MRR)指标上的结果分别为0.964、0.565和0.562。 展开更多
关键词 知识图谱 知识图谱推理 关系图卷积网络 图注意力网络 交互注意力机制
在线阅读 下载PDF
基于个性化学习和深层次细化的知识追踪
18
作者 李林昊 张晓倩 +2 位作者 董瑶 王旭 董永峰 《计算机应用》 CSCD 北大核心 2024年第10期3039-3046,共8页
针对知识追踪(KT)模型没有充分考虑学生间差异、挖掘知识状态与习题的高度匹配等问题,提出一种双层网络架构——基于个性化学习和深层次细化的知识追踪(PLDRKT)。首先,利用增强注意力机制得到习题的深层次细化表示;其次,从不同学生对习... 针对知识追踪(KT)模型没有充分考虑学生间差异、挖掘知识状态与习题的高度匹配等问题,提出一种双层网络架构——基于个性化学习和深层次细化的知识追踪(PLDRKT)。首先,利用增强注意力机制得到习题的深层次细化表示;其次,从不同学生对习题的难度感知和学习收益方面对初步知识状态进行个性化建模;最后,利用初步知识状态和深层习题表示得到学生的深层次知识状态并预测他们的未来答题情况。将PLDRKT模型与基于对抗训练的增强知识追踪(ATKT)和集成知识追踪(ENKT)等7种模型在Statics2011、ASSIST09、ASSIST15和ASSIST17数据集上进行对比实验。实验结果显示,PLDRKT模型的曲线下面积(AUC)均有增加,在4个数据集上与不考虑习题嵌入的最优基线模型相比,分别增加了0.61、1.32、5.29和0.19个百分点,可见PLDRKT模型可以较好地建模学生知识状态并预测回答。 展开更多
关键词 知识追踪 注意力 深层次细化 高度匹配 个性化
在线阅读 下载PDF
基于加权特征融合与局部特征注意的人种分类
19
作者 董永峰 钟璨 +1 位作者 齐巧玲 李林昊 《计算机工程与设计》 北大核心 2024年第9期2683-2689,共7页
为充分利用浅层特征中的细节纹理信息对人种特性的描述能力,挖掘具有区分性部位的表达特征对人种分类的作用,更好利用数据不同层次的特征与区分性部位以提供更具鲁棒性的人种信息,提出一种基于加权特征融合与局部特征注意的人种分类模型... 为充分利用浅层特征中的细节纹理信息对人种特性的描述能力,挖掘具有区分性部位的表达特征对人种分类的作用,更好利用数据不同层次的特征与区分性部位以提供更具鲁棒性的人种信息,提出一种基于加权特征融合与局部特征注意的人种分类模型(weighted feature fusion and local feature attention model,WFLA)。模型设计加权特征融合模块增强浅层与深层特征的交互,构建局部特征注意模块重点关注区分性部位。在3个公开数据集中的大规模验证实验验证了WFLA模型在人种分类任务中具有明显优势。 展开更多
关键词 人种分类 注意力机制 多层融合 深度学习 局部特征 特征提取 特征交互
在线阅读 下载PDF
问题特征增强的知识追踪模型 被引量:3
20
作者 许智宏 张惠斌 +2 位作者 董永峰 王利琴 王旭 《计算机科学与探索》 CSCD 北大核心 2024年第9期2466-2475,共10页
知识追踪根据学生过去的答题表现实时跟踪学生的知识状态并预测学生未来的答题表现,是实现个性化教学的关键。近年来,基于RNN的深度知识追踪模型逐渐成为知识追踪领域中的主流研究方法。但是,现有的知识追踪模型存在无法捕获序列间长期... 知识追踪根据学生过去的答题表现实时跟踪学生的知识状态并预测学生未来的答题表现,是实现个性化教学的关键。近年来,基于RNN的深度知识追踪模型逐渐成为知识追踪领域中的主流研究方法。但是,现有的知识追踪模型存在无法捕获序列间长期依赖以及忽略了问题与知识点间关系的问题,导致无法充分提取问题特征。针对上述问题,提出了基于问题特征增强的知识追踪模型QFEKT。使用图卷积神经网络对问题和知识点相关特征进行建模,建模过程中引入对比学习提升特征表示水平。通过问题匹配模块与学生知识状态表征模块进一步增强问题特征:通过问题匹配模块提取相似问题作为问题特征的补充;通过学生问题表征模块将双向长短期记忆网络与注意力机制结合增强问题特征建模学生的知识状态。预测模块融合相似问题特征与学生知识状态预测学生未来答题表现。在三个公开真实数据集上进行对比实验,QFEKT模型与其他基线模型相比可以更好完成知识追踪任务,在预测学生未来答题表现上具有明显优势。 展开更多
关键词 知识追踪 特征增强 图卷积神经网络 对比学习 注意力机制
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部