准确高效的麦粒计数对小麦育种和产量评估具有重要意义。传统人工计数方法费时费力且易出错。目前的自动计数方法主要基于二维图像处理技术,但在处理麦粒遮挡和获取立体形态特征方面存在局限。点云数据能够完整记录麦穗的三维几何结构,...准确高效的麦粒计数对小麦育种和产量评估具有重要意义。传统人工计数方法费时费力且易出错。目前的自动计数方法主要基于二维图像处理技术,但在处理麦粒遮挡和获取立体形态特征方面存在局限。点云数据能够完整记录麦穗的三维几何结构,为解决这些问题提供了新的思路。本文针对现有点云目标检测算法在处理密集分布麦粒时的不足,提出了一种改进的3DSSD网络用于麦穗点云中的麦粒检测与计数。该方法充分利用麦粒的形态学特征,设计了2个核心创新模块:一是提出局部形状感知采样策略(Local shape-aware sampling,LSAS),通过分析点云的局部几何结构来指导采样过程,有效缓解了传统最远点采样(Farthest point sampling,FPS)算法在密集目标场景下的特征退化问题;二是引入部件感知损失函数(Part-aware loss function,PALF),将麦粒建模为具有多个关键部位的目标,增强了网络对局部特征的感知能力。实验结果表明,改进后的方法在麦粒检测任务中AP@25达到72.68%,较基线3DSSD提升14.02%,计数任务MAE降至3.87,较3DSSD下降了85.54%,Recall提升至93.21%,从而在处理形态复杂、目标密集的麦穗点云时表现出显著优势。本研究为实现麦穗表型的快速、准确测量提供了新的技术方案,并成功地在马兰国家农业科技园区应用该方法。展开更多
传统的基于表示学习的知识推理方法只能用于封闭世界的知识推理,有效进行开放世界的知识推理是目前的热点问题。因此,提出一种基于路径和增强三元组文本的开放世界知识推理模型PEOR(Path and Enhanced triplet text for Open world know...传统的基于表示学习的知识推理方法只能用于封闭世界的知识推理,有效进行开放世界的知识推理是目前的热点问题。因此,提出一种基于路径和增强三元组文本的开放世界知识推理模型PEOR(Path and Enhanced triplet text for Open world knowledge Reasoning)。首先,使用由实体对间结构生成的多条路径和单个实体周围结构生成的增强三元组,其中路径文本通过拼接路径中的三元组文本得到,而增强三元组文本通过拼接头实体邻域文本、关系文本和尾实体邻域文本得到;其次,使用BERT(Bidirectional Encoder Representations from Transformers)分别编码路径文本和增强三元组文本;最后,使用路径向量和三元组向量计算语义匹配注意力,再使用语义匹配注意力聚合多条路径的语义信息。在3个开放世界知识图谱数据集WN18RR、FB15k-237和NELL-995上的对比实验结果表明,与次优模型BERTRL(BERT-based Relational Learning)相比,所提模型的命中率(Hits@10)指标分别提升了2.6、2.3和8.5个百分点,验证了所提模型的有效性。展开更多
文摘准确高效的麦粒计数对小麦育种和产量评估具有重要意义。传统人工计数方法费时费力且易出错。目前的自动计数方法主要基于二维图像处理技术,但在处理麦粒遮挡和获取立体形态特征方面存在局限。点云数据能够完整记录麦穗的三维几何结构,为解决这些问题提供了新的思路。本文针对现有点云目标检测算法在处理密集分布麦粒时的不足,提出了一种改进的3DSSD网络用于麦穗点云中的麦粒检测与计数。该方法充分利用麦粒的形态学特征,设计了2个核心创新模块:一是提出局部形状感知采样策略(Local shape-aware sampling,LSAS),通过分析点云的局部几何结构来指导采样过程,有效缓解了传统最远点采样(Farthest point sampling,FPS)算法在密集目标场景下的特征退化问题;二是引入部件感知损失函数(Part-aware loss function,PALF),将麦粒建模为具有多个关键部位的目标,增强了网络对局部特征的感知能力。实验结果表明,改进后的方法在麦粒检测任务中AP@25达到72.68%,较基线3DSSD提升14.02%,计数任务MAE降至3.87,较3DSSD下降了85.54%,Recall提升至93.21%,从而在处理形态复杂、目标密集的麦穗点云时表现出显著优势。本研究为实现麦穗表型的快速、准确测量提供了新的技术方案,并成功地在马兰国家农业科技园区应用该方法。
文摘传统的基于表示学习的知识推理方法只能用于封闭世界的知识推理,有效进行开放世界的知识推理是目前的热点问题。因此,提出一种基于路径和增强三元组文本的开放世界知识推理模型PEOR(Path and Enhanced triplet text for Open world knowledge Reasoning)。首先,使用由实体对间结构生成的多条路径和单个实体周围结构生成的增强三元组,其中路径文本通过拼接路径中的三元组文本得到,而增强三元组文本通过拼接头实体邻域文本、关系文本和尾实体邻域文本得到;其次,使用BERT(Bidirectional Encoder Representations from Transformers)分别编码路径文本和增强三元组文本;最后,使用路径向量和三元组向量计算语义匹配注意力,再使用语义匹配注意力聚合多条路径的语义信息。在3个开放世界知识图谱数据集WN18RR、FB15k-237和NELL-995上的对比实验结果表明,与次优模型BERTRL(BERT-based Relational Learning)相比,所提模型的命中率(Hits@10)指标分别提升了2.6、2.3和8.5个百分点,验证了所提模型的有效性。