期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
基于标签增强的细粒度文本分类 被引量:1
1
作者 郭瑞强 杨世龙 +1 位作者 贾晓文 魏谦强 《计算机工程与应用》 CSCD 北大核心 2024年第21期134-141,共8页
文本分类是自然语言处理的一个重要分支,旨在通过训练给数据标注标签。但现有的方法仅仅考虑了标签和文本之间最浅显的语义关系,并没有考虑标签本身的额外语义信息,导致文本分类的准确率难以提升。针对此问题,提出一种基于标签增强的细... 文本分类是自然语言处理的一个重要分支,旨在通过训练给数据标注标签。但现有的方法仅仅考虑了标签和文本之间最浅显的语义关系,并没有考虑标签本身的额外语义信息,导致文本分类的准确率难以提升。针对此问题,提出一种基于标签增强的细粒度文本分类模型(FGTC),它根据已知信息对标签进行解释,丰富了标签和文档之间的语义联系。此外,FGTC进一步建模标签中短语的序列关系,并采用单词级别的细粒度标签注意力方法,充分挖掘了标签的有效信息。在四个基准数据集上进行了对比实验,结果表明,该模型在文本分类任务上的准确率得到有效提升。 展开更多
关键词 文本分类 标签增强 细粒度标签注意力
在线阅读 下载PDF
基于改进T分布烟花-粒子群算法的AUV全局路径规划
2
作者 刘志华 张冉 +2 位作者 郝梦男 安凯晨 陈嘉兴 《电子学报》 EI CAS CSCD 北大核心 2024年第9期3123-3134,共12页
针对传统粒子群算法在处理自主水下机器人(Autonomous Underwater Vehicle,AUV)全局路径规划时面临的寻优时间长、能耗高的问题,本文提出一种改进的T分布烟花-粒子群算法(T-distribution Fireworks-Particle Swarm Optimization Algorit... 针对传统粒子群算法在处理自主水下机器人(Autonomous Underwater Vehicle,AUV)全局路径规划时面临的寻优时间长、能耗高的问题,本文提出一种改进的T分布烟花-粒子群算法(T-distribution Fireworks-Particle Swarm Optimization Algorithm,TFWA-PSO),该算法融合了烟花算法的高效全局搜索能力和粒子群算法的快速局部寻优特性.在变异阶段,提出自适应T分布变异来扩大搜索范围,并在理论上证明了该变异方式能够使个体在局部最优解附近增强搜索能力.在选择阶段提出了适应度选择策略,淘汰适应度差的个体,解决了传统烟花算法易丢失优秀个体的问题,并对改进的T分布烟花算法与传统烟花算法的收敛速度进行对比.将改进算法的爆炸操作、变异操作和选择策略融合到粒子群算法中,对粒子群算法的速度更新公式进行了改进,同时从理论上对所改进的算法进行了收敛性证明.仿真实验结果表明,TFWA-PSO能够有效规划出一条最短路径,同时与给定的智能优化算法相比,TFWA-PSO在寻找最优路径的时间上平均降低了24.72%,能耗平均降低了17.33%,路径长度平均降低了16.96%. 展开更多
关键词 自主水下机器人 全局路径规划 烟花算法 粒子群算法 自适应T分布变异 收敛性证明
在线阅读 下载PDF
基于策略融合及Spiking DRL的移动机器人路径规划方法 被引量:1
3
作者 安阳 王秀青 赵明华 《计算机科学》 CSCD 北大核心 2024年第S02期59-69,共11页
深度强化学习(DRL)已被成功应用于移动机器人路径规划中,基于DRL的移动机器人路径规划算法适用于高维环境,是实现移动机器人自主学习的重要方法。而训练DRL模型需要大量的环境交互经验,这意味着更高的计算成本。此外,DRL算法的经验池容... 深度强化学习(DRL)已被成功应用于移动机器人路径规划中,基于DRL的移动机器人路径规划算法适用于高维环境,是实现移动机器人自主学习的重要方法。而训练DRL模型需要大量的环境交互经验,这意味着更高的计算成本。此外,DRL算法的经验池容量有限,无法确保经验的有效利用。作为类脑计算重要工具之一的脉冲神经网络(Spiking Neural Networks,SNNs)以其独有的生物似真性,能同时融入时空信息,适用于机器人环境感知及控制。结合SNNs、卷积神经网络(CNNs)和策略融合,针对基于DRL的移动机器人路径规划算法进行研究,完成了以下工作:1)提出SCDDPG(SCDDP)算法。该算法利用CNNs对输入状态进行多通道特征提取,利用SNNs对提取的特征进行时空学习。2)在SCDDPG的基础上,提出SC2DDPG(SC2DDPG)算法。SC2DDPG通过设计状态约束策略对机器人运行状态进行约束,避免了不必要的环境探索,提升了SC2DDPG中DRL的收敛速度。3)在SCDDPG的基础上,提出了PFTDDPG(Policy Fusion and Transfer SCDDPG,PFTDDPG)算法。该算法采用分阶控制模式与DRL算法融合,针对环境中的楔形障碍物实施沿墙行走策略,并引入迁移学习对先验知识进行策略迁移。PFTDDPG算法不仅完成了单纯依靠RL不能完成的路径规划任务,还可以得到最优无碰路径。此外PFTDDPG提升了模型的收敛速度和路径规划性能。实验结果证明了所提出的3种路径规划算法的有效性,对比实验结果表明:在SpikeDDPG,SCDDPG,SC2DDPG和PFTDDPG算法中,PFTDDPG算法在路径规划成功率、训练收敛速度、规划路径长度等性能指标上表现最佳。本工作为移动机器人路径规划提出了新思路,丰富了DRL在移动机器人路径规划中的解决方案。 展开更多
关键词 深度强化学习 脉冲神经网络 卷积神经网络 迁移学习 移动机器人路径规划
在线阅读 下载PDF
基于弯曲声线和测距修正的水下节点定位算法 被引量:5
4
作者 陈嘉兴 程杰 +1 位作者 董云玲 刘志华 《电子学报》 EI CAS CSCD 北大核心 2022年第7期1567-1572,共6页
针对由于水下声速变化及障碍物干扰引起的定位误差较大的问题,本文提出了一种抛物模型定位算法.首先基于到达角度提出了适用于弯曲声线的抛物模型测距法.然后基于到达时间提出了非理想路径测距识别方法和理想路径测距修正方法.最后利用... 针对由于水下声速变化及障碍物干扰引起的定位误差较大的问题,本文提出了一种抛物模型定位算法.首先基于到达角度提出了适用于弯曲声线的抛物模型测距法.然后基于到达时间提出了非理想路径测距识别方法和理想路径测距修正方法.最后利用投影法结合最小二乘法完成定位.仿真实验表明,该算法在弯曲声线、路径识别、测距优化三个方面均能有效地降低误差. 展开更多
关键词 水下无线传感器网络 定位算法 距离修正 弯曲声线 路径识别
在线阅读 下载PDF
基于影响力的跨社交网络谣言扩散模型与抑制方法 被引量:3
5
作者 郭宏刚 杨芳 《计算机应用与软件》 北大核心 2022年第7期73-79,153,共8页
传统在线社交网络谣言分析模型均考虑单一的社交网络,而当前谣言通常跨多个社交网络进行传播,传播速度极快,影响极大。针对这种情况,提出一种基于社交影响力的跨多个社交网络谣言传播模型,基于该模型给出贪婪谣言抑制方法。通过用户与... 传统在线社交网络谣言分析模型均考虑单一的社交网络,而当前谣言通常跨多个社交网络进行传播,传播速度极快,影响极大。针对这种情况,提出一种基于社交影响力的跨多个社交网络谣言传播模型,基于该模型给出贪婪谣言抑制方法。通过用户与其邻居的外部聚类系数决定社交网络的影响力节点,保留高影响力节点的谣言扩散连接,从而降低模型的复杂度,以贪婪算法为基础,预测传播能力强的种子节点,通过失活种子节点集对谣言进行快速抑制。实验结果表明,该模型能够较为准确地模拟谣言的传播趋势,同时算法能够快速抑制谣言的传播。 展开更多
关键词 在线社交网络 网络安全 公共安全 谣言传播 贪婪算法
在线阅读 下载PDF
一种融合胶囊网络的分类方法 被引量:1
6
作者 王静红 张戴鹏 《计算机应用研究》 CSCD 北大核心 2022年第12期3574-3581,3586,共9页
目前的ADMET分类方法在对具有多特征性和特征关联性的化合物数据进行ADMET分类时存在不足。而且,对ADMET分类结果不具备可解释性。针对上述问题,提出一种融合胶囊网络的分类模型(CapsMC)。CapsMC模型首先提出一种feature-to-image图像... 目前的ADMET分类方法在对具有多特征性和特征关联性的化合物数据进行ADMET分类时存在不足。而且,对ADMET分类结果不具备可解释性。针对上述问题,提出一种融合胶囊网络的分类模型(CapsMC)。CapsMC模型首先提出一种feature-to-image图像转换算法。使用该算法将特征之间的关联关系和依赖关系作为考量纳入到分类依据中,实现特征的多层次提取。其次,探索胶囊网络的高级应用,提出一种认知推理机制。使用该机制对特征进行认知推理,实现ADMET的可解释性分类。模型在五种ADMET数据集上的实验结果表明,CapsMC模型可以高效实现ADMET的可解释性分类。 展开更多
关键词 ADMET 图像转换 胶囊网络 认知推理机制 可解释性分类
在线阅读 下载PDF
一种具有连续跳数值的三维DV-Hop改进算法 被引量:16
7
作者 程杰 董云玲 +1 位作者 陈嘉兴 刘志华 《电子学报》 EI CAS CSCD 北大核心 2020年第11期2122-2130,共9页
设计精确的定位算法是无线传感器网络(Wireless Sensor Networks,WSNs)的研究热点.针对DV-Hop(Distance Vector-Hop)定位算法中节点间距离估计误差较大导致定位不精确的问题,提出了一种具有连续跳数值的三维DV-Hop改进算法.探究了邻居... 设计精确的定位算法是无线传感器网络(Wireless Sensor Networks,WSNs)的研究热点.针对DV-Hop(Distance Vector-Hop)定位算法中节点间距离估计误差较大导致定位不精确的问题,提出了一种具有连续跳数值的三维DV-Hop改进算法.探究了邻居节点间的距离与相应节点位置和通信半径构成的相交球体体积之间的关系,提出了连续跳数值的定义,并通过参数修正给出了其计算方法.通过仿真实验探究了网络环境对参数的影响并确定了参数的取值,使用连续跳数值代替DV-Hop算法中的跳数来降低节点间距离估计误差.仿真实验表明,该算法在不增加算法复杂度以及额外硬件的情况下有效地降低了定位误差. 展开更多
关键词 无线传感器网络 DV-HOP定位 相交球体 连续跳数值 参数修正
在线阅读 下载PDF
结合双流特征融合及对抗学习的图像显著性检测 被引量:5
8
作者 张艺涵 张朝晖 +2 位作者 霍丽娜 解滨 王秀青 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2021年第3期376-384,共9页
为实现图像显著区域或目标的低级特征与语义信息有意义的结合,以获取结构更完整、边界更清晰的显著性检测结果,提出一种结合双流特征融合及对抗学习的彩色图像显著性检测(SaTSAL)算法.首先,以VGG-16和Res2Net-50为双流异构主干网络,实... 为实现图像显著区域或目标的低级特征与语义信息有意义的结合,以获取结构更完整、边界更清晰的显著性检测结果,提出一种结合双流特征融合及对抗学习的彩色图像显著性检测(SaTSAL)算法.首先,以VGG-16和Res2Net-50为双流异构主干网络,实现自底向上、不同级别的特征提取;之后,分别针对每个流结构,将相同级别的特征图送入卷积塔模块,以增强级内特征图的多尺度信息;进一步,采用自顶向下、跨流特征图逐级侧向融合方式生成显著图;最后,在条件生成对抗网络的主体框架下,利用对抗学习提升显著性检测结果与显著目标的结构相似性.以P-R曲线、F-measure、平均绝对误差、S-measure为评价指标,在ECSSD,PASCAL-S,DUT-OMRON以及DUTS-test 4个公开数据集上与其他10种基于深度学习的显著性检测算法的对比实验表明,SaTSAL算法优于其他大部分算法. 展开更多
关键词 显著性检测 双流特征融合 对抗学习 卷积塔 条件生成对抗网络
在线阅读 下载PDF
基于依存关系的命名实体识别 被引量:8
9
作者 张雪松 郭瑞强 黄德根 《中文信息学报》 CSCD 北大核心 2021年第6期63-73,共11页
现有的命名实体识别方法主要是将句子看作一个序列进行处理,忽略了句子中潜在的句法信息,存在长距离依赖问题。为此,该文提出一种基于依存关系的命名实体识别模型,通过在输入数据中增加依存树信息,改变双向长短时记忆网络的层间传播方式... 现有的命名实体识别方法主要是将句子看作一个序列进行处理,忽略了句子中潜在的句法信息,存在长距离依赖问题。为此,该文提出一种基于依存关系的命名实体识别模型,通过在输入数据中增加依存树信息,改变双向长短时记忆网络的层间传播方式,以获得单词在依存树中的子节点和父节点信息,并通过注意力机制动态选择两者的特征,最后将特征输入到CRF层实现命名实体标注。实验表明,该方法较BiLSTM-CRF模型在性能上得到了提高,且在长实体识别上优势明显。在OntoNotes 5.0 English和OntoNotes 5.0 Chinese以及SemEval-2010 Task 1 Spanish上的F1值分别达到了88.94%、77.42%、84.38%。 展开更多
关键词 命名实体识别 依存树 有向图 注意力机制
在线阅读 下载PDF
基于耦合度量的多尺度聚类挖掘方法 被引量:10
10
作者 田真真 赵书良 +2 位作者 李文斌 张璐璐 陈润资 《数据采集与处理》 CSCD 北大核心 2020年第3期549-562,共14页
为了能够更好地对非独立同分布的多尺度分类型数据集进行研究,基于无监督耦合度量相似性方法,提出针对非独立同分布的分类属性型数据集的多尺度聚类挖掘算法。首先,对基准尺度数据集进行基于耦合度量的基准尺度聚类;其次,提出基于单链... 为了能够更好地对非独立同分布的多尺度分类型数据集进行研究,基于无监督耦合度量相似性方法,提出针对非独立同分布的分类属性型数据集的多尺度聚类挖掘算法。首先,对基准尺度数据集进行基于耦合度量的基准尺度聚类;其次,提出基于单链的尺度上推和基于Lanczos核的尺度下推尺度转换算法;最后,利用公用数据集以及H省真实数据集进行实验验证。将耦合度量相似性(Couple metric similarity,CMS)、逆发生频率(Inverse occurrence frequency,IOF)、汉明距离(Hamming distance,HM)等方法与谱聚类结合作为对比算法,结果表明,尺度上推算法与对比算法相比,NMI值平均提高13.1%,MSE值平均减小0.827,F-score值平均提高12.8%;尺度下推算法NMI值平均提高19.2%,MSE值平均减小0.028,F-score值平均提高15.5%。实验结果表明,所提出的算法具有有效性和可行性。 展开更多
关键词 多尺度 聚类 分类数据 尺度转换 度量学习
在线阅读 下载PDF
基于统计特征的Quality Phrase挖掘方法 被引量:4
11
作者 杨欢欢 赵书良 +2 位作者 李文斌 武永亮 田国强 《数据采集与处理》 CSCD 北大核心 2020年第3期458-473,共16页
Quality Phrase挖掘是从文本语料库中提取有意义短语的过程,是文档摘要、信息检索等任务的基础。然而现有的无监督短语挖掘方法存在候选短语质量不高、Quality Phrase的特征权重平均分配的问题。本文提出基于统计特征的Quality Phrase... Quality Phrase挖掘是从文本语料库中提取有意义短语的过程,是文档摘要、信息检索等任务的基础。然而现有的无监督短语挖掘方法存在候选短语质量不高、Quality Phrase的特征权重平均分配的问题。本文提出基于统计特征的Quality Phrase挖掘方法,将频繁N-Gram挖掘、多词短语组合性约束及单词短语拼写检查相结合,保证了候选短语的质量;引入公共知识库对候选短语添加类别标签,实现了Quality Phrase特征权重的分配,并考虑特征之间相互影响设置惩罚因子调整权重比例;按照候选短语的特征加权函数得分排序,提取Quality Phrase。实验结果表明,基于统计特征的Quality Phrase挖掘方法明显提高了短语挖掘的精度,与最优的无监督短语挖掘方法相比,精确率、召回率及F1-Score分别提升了5.97%,1.77%和4.02%。 展开更多
关键词 文本挖掘 Quality Phrase 统计特征 候选短语 特征加权
在线阅读 下载PDF
多尺度分类挖掘算法
12
作者 张璐璐 赵书良 +1 位作者 田真真 陈润资 《计算机应用研究》 CSCD 北大核心 2021年第2期414-420,共7页
多尺度分类挖掘多局限于空间数据,且对一般数据尺度特性进行分类的研究较少。针对上述问题,进行普适的多尺度分类方法研究,以扩大多尺度适用范围。从空间数据估计角度出发,结合层次理论和尺度特性,基于概率密度估计离散化方法,针对数据... 多尺度分类挖掘多局限于空间数据,且对一般数据尺度特性进行分类的研究较少。针对上述问题,进行普适的多尺度分类方法研究,以扩大多尺度适用范围。从空间数据估计角度出发,结合层次理论和尺度特性,基于概率密度估计离散化方法,针对数据的多尺度特性进行分类挖掘。以非局部均值和三次卷积插值为理论基础,利用Q统计和不一致度量进行操作,提出多尺度分类尺度上推算法和多尺度分类尺度下推算法。采用UCI数据集和H省人口真实数据集进行实验,并与CFW、MSCSUA和MSCSDA等算法进行对比,结果表明,该算法可行有效。与其他算法相比,尺度上推算法正确率平均提高4.5%,F-score提高4.8%,NMI提高12.3%,尺度下推算法各个相应指标分别平均提高5.3%,6.6%和11.8%。 展开更多
关键词 多尺度 不一致度量 尺度转换 多尺度分类挖掘 Q统计
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部