期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进DDPG算法的复杂环境下AGV路径规划方法研究 被引量:14
1
作者 孟晨阳 郝崇清 +3 位作者 李冉 王晓博 王昭雷 赵江 《计算机应用研究》 CSCD 北大核心 2022年第3期681-687,共7页
为了提高AGV(automatic guided vehicle)在复杂未知环境下的搜索能力,提出了一种改进的深度确定性策略梯度(deep deterministic policy gradient, DDPG)算法。该算法通过构建经验回放矩阵和双层网络结构提高算法的收敛速度,并将波尔兹... 为了提高AGV(automatic guided vehicle)在复杂未知环境下的搜索能力,提出了一种改进的深度确定性策略梯度(deep deterministic policy gradient, DDPG)算法。该算法通过构建经验回放矩阵和双层网络结构提高算法的收敛速度,并将波尔兹曼引入到ε-greedy搜索策略中,解决了AGV在选择最优动作时的局部最优问题;针对深度神经网络训练速度缓慢的问题,将优先级采样应用于深度确定性策略梯度算法中;为解决普通优先级采样复杂度过高的问题,提出了利用小批量优先采样方法训练网络。为了验证方法的有效性,通过栅格法建模并在不同的复杂环境下进行仿真实验对比,比较了不同算法的损失函数、迭代次数和回报值。实验结果表明,所提改进算法与原算法相比损失函数减小、迭代次数减少、回报值增加,验证了算法的有效性,同时为AGV在复杂环境下能够更加安全且快速地完成规划任务提供了新的思路。 展开更多
关键词 深度学习 自动化导引车路径规划 深度确定性策略梯度算法 小批量优先采样
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部