期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进DDPG算法的复杂环境下AGV路径规划方法研究
被引量:
14
1
作者
孟晨阳
郝崇清
+3 位作者
李冉
王晓博
王昭雷
赵江
《计算机应用研究》
CSCD
北大核心
2022年第3期681-687,共7页
为了提高AGV(automatic guided vehicle)在复杂未知环境下的搜索能力,提出了一种改进的深度确定性策略梯度(deep deterministic policy gradient, DDPG)算法。该算法通过构建经验回放矩阵和双层网络结构提高算法的收敛速度,并将波尔兹...
为了提高AGV(automatic guided vehicle)在复杂未知环境下的搜索能力,提出了一种改进的深度确定性策略梯度(deep deterministic policy gradient, DDPG)算法。该算法通过构建经验回放矩阵和双层网络结构提高算法的收敛速度,并将波尔兹曼引入到ε-greedy搜索策略中,解决了AGV在选择最优动作时的局部最优问题;针对深度神经网络训练速度缓慢的问题,将优先级采样应用于深度确定性策略梯度算法中;为解决普通优先级采样复杂度过高的问题,提出了利用小批量优先采样方法训练网络。为了验证方法的有效性,通过栅格法建模并在不同的复杂环境下进行仿真实验对比,比较了不同算法的损失函数、迭代次数和回报值。实验结果表明,所提改进算法与原算法相比损失函数减小、迭代次数减少、回报值增加,验证了算法的有效性,同时为AGV在复杂环境下能够更加安全且快速地完成规划任务提供了新的思路。
展开更多
关键词
深度学习
自动化导引车路径规划
深度确定性策略梯度算法
小批量优先采样
在线阅读
下载PDF
职称材料
题名
基于改进DDPG算法的复杂环境下AGV路径规划方法研究
被引量:
14
1
作者
孟晨阳
郝崇清
李冉
王晓博
王昭雷
赵江
机构
河北
科技
大学
电气工程学院
河北工业职业技术大学智能制造系
河北
省电力有限公司
出处
《计算机应用研究》
CSCD
北大核心
2022年第3期681-687,共7页
基金
国家自然科学基金资助项目(51507048)
河北省重点研发计划项目(20326628D)
河北省高等学校科学技术研究项目(ZD2016142)。
文摘
为了提高AGV(automatic guided vehicle)在复杂未知环境下的搜索能力,提出了一种改进的深度确定性策略梯度(deep deterministic policy gradient, DDPG)算法。该算法通过构建经验回放矩阵和双层网络结构提高算法的收敛速度,并将波尔兹曼引入到ε-greedy搜索策略中,解决了AGV在选择最优动作时的局部最优问题;针对深度神经网络训练速度缓慢的问题,将优先级采样应用于深度确定性策略梯度算法中;为解决普通优先级采样复杂度过高的问题,提出了利用小批量优先采样方法训练网络。为了验证方法的有效性,通过栅格法建模并在不同的复杂环境下进行仿真实验对比,比较了不同算法的损失函数、迭代次数和回报值。实验结果表明,所提改进算法与原算法相比损失函数减小、迭代次数减少、回报值增加,验证了算法的有效性,同时为AGV在复杂环境下能够更加安全且快速地完成规划任务提供了新的思路。
关键词
深度学习
自动化导引车路径规划
深度确定性策略梯度算法
小批量优先采样
Keywords
deep learning
AGV path planning
depth deterministic policy gradient algorithm
small batch priority sampling
分类号
TP393.04 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进DDPG算法的复杂环境下AGV路径规划方法研究
孟晨阳
郝崇清
李冉
王晓博
王昭雷
赵江
《计算机应用研究》
CSCD
北大核心
2022
14
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部