图数据增强是一种通过变换和扩充图结构和节点特征来增加训练数据多样性、提高图神经网络性能的技术。为了应对图数据增强面临的难以综合信息完整性、特征平滑性、图多样性和局部依赖关系的挑战,缓解图神经网络的过平滑和过拟合问题,提...图数据增强是一种通过变换和扩充图结构和节点特征来增加训练数据多样性、提高图神经网络性能的技术。为了应对图数据增强面临的难以综合信息完整性、特征平滑性、图多样性和局部依赖关系的挑战,缓解图神经网络的过平滑和过拟合问题,提高其性能,提出了一种基于物理热力学中的熵理论的图数据增强模型(Neighbor Replacement Based on Graph Entropy,NRGE)。首先,引入了一种新的图熵定义,用于度量数据流形平滑度;基于减少图熵损失的思想,提出了一种新的数据增强策略,用于生成更多合适的训练数据。然后,通过增强节点的采样邻居,以保证数据增强的一致性;采用随机替换节点的一阶邻居为二阶邻居的方式,增加了数据增强的多样性。最后,引入了邻居约束正则化方法,通过约束增强后的邻居之间的预测一致性来提高模型性能。消融实验结果表明,通过保持三角形图案的信息结构,NRGE模型能够有效降低图熵损失,从而改善学习效果。在Cora,Citeseer和Pubmed 3个公开数据集上进行了节点分类实验,相较于基准模型,NRGE模型在Cora数据集上提升了1.1%,在Citeseer数据集上提升了0.8%,在Pubmed数据集上略微降低了0.4%。结果表明,NRGE模型有效改善了图神经网络的性能,提高了其泛化能力。展开更多
超短期电力负荷预测作为电力系统的基本组成,能为生产调度计划的制定提供重要依据。然而,电力负荷具有非线性、时变性和不确定性,充分挖掘其潜在特征并分别预测,是提升预测准确性的关键。提出一种基于自适应局部迭代滤波(adaptive local...超短期电力负荷预测作为电力系统的基本组成,能为生产调度计划的制定提供重要依据。然而,电力负荷具有非线性、时变性和不确定性,充分挖掘其潜在特征并分别预测,是提升预测准确性的关键。提出一种基于自适应局部迭代滤波(adaptive local iterative filtering,ALIF)的BiGRU-Attention-XGBoost电力负荷组合预测模型。该模型基于ALIF-SE实现将历史负荷序列分解重组为周期序列、波动序列和趋势序列;通过Attention机制对BiGRU模型进行改进,并结合XGBoost模型构建基于时变权重组合的电力负荷预测模型。实验分析表明,输入模型数据经过ALIF-SE处理后预测精度有明显提升;所提组合模型在工作日和节假日均具有较好的预测效果,预测误差大部分在5%以下;通过在不同负荷数据集下进行实验对比,验证了所提预测方法的可迁移性。实验结果证明,所提模型具有有效性、准确性和可行性。展开更多
文摘图数据增强是一种通过变换和扩充图结构和节点特征来增加训练数据多样性、提高图神经网络性能的技术。为了应对图数据增强面临的难以综合信息完整性、特征平滑性、图多样性和局部依赖关系的挑战,缓解图神经网络的过平滑和过拟合问题,提高其性能,提出了一种基于物理热力学中的熵理论的图数据增强模型(Neighbor Replacement Based on Graph Entropy,NRGE)。首先,引入了一种新的图熵定义,用于度量数据流形平滑度;基于减少图熵损失的思想,提出了一种新的数据增强策略,用于生成更多合适的训练数据。然后,通过增强节点的采样邻居,以保证数据增强的一致性;采用随机替换节点的一阶邻居为二阶邻居的方式,增加了数据增强的多样性。最后,引入了邻居约束正则化方法,通过约束增强后的邻居之间的预测一致性来提高模型性能。消融实验结果表明,通过保持三角形图案的信息结构,NRGE模型能够有效降低图熵损失,从而改善学习效果。在Cora,Citeseer和Pubmed 3个公开数据集上进行了节点分类实验,相较于基准模型,NRGE模型在Cora数据集上提升了1.1%,在Citeseer数据集上提升了0.8%,在Pubmed数据集上略微降低了0.4%。结果表明,NRGE模型有效改善了图神经网络的性能,提高了其泛化能力。
文摘超短期电力负荷预测作为电力系统的基本组成,能为生产调度计划的制定提供重要依据。然而,电力负荷具有非线性、时变性和不确定性,充分挖掘其潜在特征并分别预测,是提升预测准确性的关键。提出一种基于自适应局部迭代滤波(adaptive local iterative filtering,ALIF)的BiGRU-Attention-XGBoost电力负荷组合预测模型。该模型基于ALIF-SE实现将历史负荷序列分解重组为周期序列、波动序列和趋势序列;通过Attention机制对BiGRU模型进行改进,并结合XGBoost模型构建基于时变权重组合的电力负荷预测模型。实验分析表明,输入模型数据经过ALIF-SE处理后预测精度有明显提升;所提组合模型在工作日和节假日均具有较好的预测效果,预测误差大部分在5%以下;通过在不同负荷数据集下进行实验对比,验证了所提预测方法的可迁移性。实验结果证明,所提模型具有有效性、准确性和可行性。