期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于点线特征视觉惯性融合的机器人SLAM算法 被引量:15
1
作者 王立玲 朱旭阳 +1 位作者 马东 王洪瑞 《中国惯性技术学报》 EI CSCD 北大核心 2022年第6期730-737,共8页
针对弱纹理环境下单目视觉SLAM系统只依靠提取点特征鲁棒性较差的问题,提出一种点线特征视觉与惯导融合的机器人SLAM算法。首先,采用自适应加权提取点线特征并使用普吕克坐标法表示线段,减小计算量同时较好克服线特征提取时线段割裂的不... 针对弱纹理环境下单目视觉SLAM系统只依靠提取点特征鲁棒性较差的问题,提出一种点线特征视觉与惯导融合的机器人SLAM算法。首先,采用自适应加权提取点线特征并使用普吕克坐标法表示线段,减小计算量同时较好克服线特征提取时线段割裂的不足;其次,采用四叉树法实现点线特征提取均匀化解决特征堆积问题,同时消除点线特征误匹配,再利用视觉点线信息与IMU紧耦合优化机制提高机器人SLAM算法精确度。最后,将该算法在EuRoC数据集和弱纹理环境中进行实验,结果表明,改进后线特征提取相较于传统线特征提取鲁棒性提高了12.94%,相较于原生算法ORB-SLAM3,改进后特征匹配时间节约了19.2%,大型弱纹理环境中绝对定位精度提高了55.6%,所提算法在弱纹理环境中定位效果具有较强的鲁棒性和精确性。 展开更多
关键词 视觉SLAM 点线特征融合 线特征提取 传感器融合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部