近年来,深度学习模型在农药发现和从头分子设计方面取得了显著进展。然而目前用于农药分子设计的深度生成模型中,基于骨架的分子生成模型较少。并且基于骨架的分子生成方法面临着生成分子质量和多样性不足的挑战。为此,该研究提出了一...近年来,深度学习模型在农药发现和从头分子设计方面取得了显著进展。然而目前用于农药分子设计的深度生成模型中,基于骨架的分子生成模型较少。并且基于骨架的分子生成方法面临着生成分子质量和多样性不足的挑战。为此,该研究提出了一种基于骨架结构的循环神经网络模型(multi head attention-recurrent neural network,MHA-RNN),首先生成简化分子线性输入规范(simplified molecular input line entry system,SMILES)格式的分子骨架,然后对骨架进行装饰以生成新的分子。试验结果表明,模型生成的分子在有效性、新颖性和唯一性方面分别达到了97.18%、99.87%和100.00%。此外,生成分子在脂水分配系数(logarithm of partition coefficient,LogP)、拓扑极性表面积(topological polar surface area,TPSA)、相对分子质量(molecular weight,MW)、类药性(quantitative estimate of drug-likeness,QED)、氢键受体(hydrogen bond acceptor,HBA)、氢键供体(hydrogen bond donor,HBD)、旋转键数(rotatable bonds,RotB)等性质上的分布与现有分子高度相似,研究结果为农药新药研发提供了技术支持与参考。展开更多
文摘近年来,深度学习模型在农药发现和从头分子设计方面取得了显著进展。然而目前用于农药分子设计的深度生成模型中,基于骨架的分子生成模型较少。并且基于骨架的分子生成方法面临着生成分子质量和多样性不足的挑战。为此,该研究提出了一种基于骨架结构的循环神经网络模型(multi head attention-recurrent neural network,MHA-RNN),首先生成简化分子线性输入规范(simplified molecular input line entry system,SMILES)格式的分子骨架,然后对骨架进行装饰以生成新的分子。试验结果表明,模型生成的分子在有效性、新颖性和唯一性方面分别达到了97.18%、99.87%和100.00%。此外,生成分子在脂水分配系数(logarithm of partition coefficient,LogP)、拓扑极性表面积(topological polar surface area,TPSA)、相对分子质量(molecular weight,MW)、类药性(quantitative estimate of drug-likeness,QED)、氢键受体(hydrogen bond acceptor,HBA)、氢键供体(hydrogen bond donor,HBD)、旋转键数(rotatable bonds,RotB)等性质上的分布与现有分子高度相似,研究结果为农药新药研发提供了技术支持与参考。