文摘目的探讨基于动态对比增强磁共振成像(dynamic contrast-enhanced magnetic resonance imaging,DCE-MRI)和扩散加权成像(diffusion-weighted imaging,DWI)的瘤内及瘤周影像组学预测乳腺癌人表皮生长因子受体2(human epidermal growth factor receptor-2,HER-2)状态的价值。材料与方法回顾性分析246例经术后病理证实的乳腺癌患者的临床及影像学资料,按7∶3比例随机分为训练组和验证组。采用ITK-SNAP软件手动勾画病灶瘤内感兴趣区,使用PHIgo-AK软件进行瘤周的扩展并提取瘤内及瘤周的影像组学特征。采用最小冗余最大相关(max-relevance and min-redundancy,mRMR)算法等选择DCE-MRI、DWI瘤内及瘤周的最优特征数。分别建立单序列及联合序列的影像组学模型,采用受试者工作特征(receiveroperating characteristic,ROC)曲线对各模型的预测效能进行分析,并计算曲线下面积(area under the curve,AUC),选出预测效能最高的模型,在训练组中从临床及常规影像学特征中通过单因素logistic回归筛选出预测HER-2状态的独立危险因素,结合预测效能最高模型的影像组学标签评分(radiomic score,rad-score)建立融合模型,并以诺模图(nomogram)展示,采用AUC值,决策曲线分析(decision curve analysis,DCA)评估模型的效能及临床价值。结果基于DCE-MRI和DWI瘤内及瘤周的影像组学联合模型预测HER-2状态的AUC值在训练组和验证组分别为0.953和0.948,效能最高。肿瘤最大径是区分乳腺癌HER-2状态的独立危险因素,最终结合rad-score和肿瘤最大径建立的融合模型对乳腺癌HER-2状态有良好的预测效能,在训练组的AUC值为0.961,验证组为0.958。结论基于DCE-MRI和DWI瘤内及瘤周的影像组学方法对乳腺癌HER-2状态的预测具有良好的价值。