期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
基于统计模量分析间歇过程故障检测方法研究 被引量:41
1
作者 张成 李元 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第9期2103-2110,共8页
针对间歇生产过程非线性、动态性、多阶段、采样不同步等特点,提出一种基于统计模量分析的故障检测方法。间歇过程统计模量反映原始数据特征,可以有效提取过程的非线性特征,保证了统计模量近似服从高斯分布,并使采样数据在不丢失信息的... 针对间歇生产过程非线性、动态性、多阶段、采样不同步等特点,提出一种基于统计模量分析的故障检测方法。间歇过程统计模量反映原始数据特征,可以有效提取过程的非线性特征,保证了统计模量近似服从高斯分布,并使采样数据在不丢失信息的前提下同步化处理。在统计模量训练集中应用主元分析(PCA)方法进行故障检测,可以满足T2和SPE控制限确定的假设要求,使故障检测的准确性与可靠性得到提高。通过在盘尼西林发酵间歇过程中的应用和与多向主元分析(MPCA)、核主元分析(KPCA)等方法对比,验证了此方法的有效性。 展开更多
关键词 间歇过程 统计模量 主元分析 故障检测
在线阅读 下载PDF
基于扩散K近邻距离的间歇过程故障诊断 被引量:4
2
作者 李元 刘亚东 张成 《控制理论与应用》 EI CAS CSCD 北大核心 2015年第12期1653-1659,共7页
针对间歇过程多模态、变量非线性、非高斯分布等特征,提出一种基于扩散K近邻距离的故障诊断方法.该方法首先在样本集完全图中应用马尔科夫随机游走定义带有分量权重的扩散距离,可以有效提取数据样本的关联信息和统计特征,然后应用K近邻... 针对间歇过程多模态、变量非线性、非高斯分布等特征,提出一种基于扩散K近邻距离的故障诊断方法.该方法首先在样本集完全图中应用马尔科夫随机游走定义带有分量权重的扩散距离,可以有效提取数据样本的关联信息和统计特征,然后应用K近邻规则方法对样本数据进行故障诊断.这种应用扩散距离替换传统K近邻规则欧式距离的统计方法,既可以提升对数据样本关联性信息的有效提取能力,又可以使得K近邻规则处理非线性、多模态检测问题的性能得以保持.通过在半导体蚀刻批次过程中的仿真应用,与传统线性、非线性方法的对比分析,实验结果验证了方法的有效性. 展开更多
关键词 扩散距离 K近邻规则 故障诊断 间歇过程
在线阅读 下载PDF
基于SP-LNS-KNN的半导体生产过程故障检测方法研究 被引量:4
3
作者 冯立伟 张成 +2 位作者 谢彦红 李元 逄玉俊 《计算机应用研究》 CSCD 北大核心 2018年第11期3307-3310,3314,共5页
半导体生产过程是典型的间歇过程,针对其过程数据的多模态、多阶段、模态结构不同和批次不等长等特点,提出了基于统计模量的局部近邻标准化和K近邻相结合的故障检测方法(SP-LNS-KNN)。首先计算样本的统计模量,其次对样本的统计模量使用... 半导体生产过程是典型的间歇过程,针对其过程数据的多模态、多阶段、模态结构不同和批次不等长等特点,提出了基于统计模量的局部近邻标准化和K近邻相结合的故障检测方法(SP-LNS-KNN)。首先计算样本的统计模量,其次对样本的统计模量使用其局部K近邻集进行标准化,最后计算样本与其前K近邻距离,得到平均累积距离D作为检测指标,进而对工业过程进行在线故障检测。统计模量保留了数据的主要信息,将二维样本数据简化为一维数据;局部近邻标准化可以有效降低中心漂移、模态结构差异明显的影响。SP-LNS-KNN不仅能够对大故障实现检测,并且能够提高对小模态的微弱故障的检测能力。使用SP-LNS-KNN对一个实际半导体生产过程数据进行故障检测实验,并将实验结果与PCA、KPCA、LOF和FD-KNN方法的结果进行对比分析,验证了方法的有效性。 展开更多
关键词 标准化 K近邻 多模态 故障检测 统计模量分析
在线阅读 下载PDF
基于局部保持嵌入-K近邻比率密度的半导体蚀刻过程故障诊断策略 被引量:2
4
作者 张成 郑百顺 +2 位作者 郭青秀 冯立伟 李元 《控制理论与应用》 EI CAS CSCD 北大核心 2020年第6期1342-1348,共7页
针对多模态间歇过程存在数据维度高且方差差异较大的特征,提出一种基于局部保持嵌入–K近邻比率密度(NPE–KRD)规则的故障检测方法.首先,利用局部保持嵌入(NPE)方法将原始的高维数据投影到低维空间;其次,在低维空间通过计算样本的密度... 针对多模态间歇过程存在数据维度高且方差差异较大的特征,提出一种基于局部保持嵌入–K近邻比率密度(NPE–KRD)规则的故障检测方法.首先,利用局部保持嵌入(NPE)方法将原始的高维数据投影到低维空间;其次,在低维空间通过计算样本的密度及其前K近邻密度的均值来建立K近邻比率密度(KRD);最后,根据核密度估计法确定统计量控制限并进行故障诊断.NPE方法既能够在低维空间保持数据局部近邻结构,又能够降低故障检测过程的计算复杂度.通过引入比率密度,NPE–KRD可以降低多模态方差结构差异对故障检测的影响,提高过程故障检测率.通过数值例子和半导体工业过程的仿真实验,并与主元分析、K近邻、局部保持嵌入等方法进行比较,验证了本文方法的有效性. 展开更多
关键词 局部保持嵌入 K近邻比率密度 半导体蚀刻过程 故障诊断 多工况
在线阅读 下载PDF
扩散映射K近邻在工业过程故障检测中的应用 被引量:6
5
作者 李元 刘亚东 张成 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2015年第12期1370-1376,共7页
针对半导体工业过程多工序、变量非线性、非高斯分布等特征,提出一种基于扩散映射的K近邻(DMKNN)故障检测方法.充分利用扩散映射(DM)降维,提取低维流行特性,保留数据集内在非线性结构特性,应用改进的KNN故障诊断方法在低维流行特征空间... 针对半导体工业过程多工序、变量非线性、非高斯分布等特征,提出一种基于扩散映射的K近邻(DMKNN)故障检测方法.充分利用扩散映射(DM)降维,提取低维流行特性,保留数据集内在非线性结构特性,应用改进的KNN故障诊断方法在低维流行特征空间进行检测.研究结果表明:与传统K近邻技术的统计方法相比,DMKNN的故障检测率高于其他算法,提升了对数据样本关联性信息的有效提取能力,保持了K近邻处理非线性、多模态检测问题的性能,验证了该方法的有效性. 展开更多
关键词 扩散映射 K近邻 故障检测 低维流行特性 半导体工业过程
在线阅读 下载PDF
基于加权统计特征KICA的故障检测与诊断方法 被引量:11
6
作者 张成 潘立志 李元 《化工学报》 EI CAS CSCD 北大核心 2022年第2期827-837,共11页
针对核独立元分析(kernel independent component analysis,KICA)在非线性动态过程中对微小故障检测率低的问题,提出一种基于加权统计特征KICA(weighted statistical feature KICA,WSFKICA)的故障检测与诊断方法。首先,利用KICA从原始... 针对核独立元分析(kernel independent component analysis,KICA)在非线性动态过程中对微小故障检测率低的问题,提出一种基于加权统计特征KICA(weighted statistical feature KICA,WSFKICA)的故障检测与诊断方法。首先,利用KICA从原始数据中捕获独立元数据和残差数据;然后,通过加权统计特征和滑动窗口获取改进统计特征数据集,并由此数据集构建统计量进行故障检测;最后,利用基于变量贡献图的方法进行过程故障诊断。与传统KICA统计量相比,所提方法的统计量对非线性动态过程中的微小故障具有更高的故障检测性能。应用该方法对一个数值例子和田纳西-伊斯曼(Tennessee-Eastman,TE)过程进行仿真测试,仿真结果显示出所提方法相对于独立元分析(ICA)、KICA、核主成分分析(kernel principal component analysis,KPCA)和统计局部核主成分分析(statistical local kernel principal component analysis,SLKPCA)检测的优势。 展开更多
关键词 独立元分析 微小故障 统计特征 过程控制 参数估值 故障诊断 动态仿真
在线阅读 下载PDF
基于标准距离k近邻的多模态过程故障检测策略 被引量:15
7
作者 冯立伟 张成 +1 位作者 李元 谢彦红 《控制理论与应用》 EI CAS CSCD 北大核心 2019年第4期553-560,共8页
工业产品的生产经常需要在不同模态间切换,多模态过程数据具有多中心和方差差异大等特点.针对多模态过程数据的特征,通过构造标准距离,提出了基于标准距离k近邻的故障检测策略(SD–kNN).首先在标准距离度量下计算样本与其前k近邻的距离... 工业产品的生产经常需要在不同模态间切换,多模态过程数据具有多中心和方差差异大等特点.针对多模态过程数据的特征,通过构造标准距离,提出了基于标准距离k近邻的故障检测策略(SD–kNN).首先在标准距离度量下计算样本与其前k近邻的距离;其次将近邻距离的平方和的均值作为样本的统计量D^2;最后,根据D^2的分布确定检测方法的控制限,当新样本的D^2大于控制限时,判定其为故障,否则为正常.标准距离使不同模态中样本间的近邻距离能够在同一尺度下度量,使得SD–kNN的D^2能够准确反映样本间的相似程度.进行了数值模拟过程和青霉素发酵过程故障检测实验. SD–kNN方法检测出了数值模拟过程的全部故障和青霉素过程95%以上的故障,相对于PCA, kPCA, FD–kNN等方法具有更高的故障检测率. SD–kNN继承了FD–kNN对一般多模态过程的故障检测能力,还能够对方差差异显著的多模态过程进行故障检测. 展开更多
关键词 主元分析 核主元分析 K近邻 故障检测 多模态
在线阅读 下载PDF
基于时空近邻标准化和局部离群因子的复杂过程故障检测 被引量:16
8
作者 冯立伟 李元 +1 位作者 张成 谢彦红 《控制理论与应用》 EI CAS CSCD 北大核心 2020年第3期651-657,共7页
针对复杂过程数据的非线性、动态性和中心漂移等特征,提出了基于时空近邻标准化和局部离群因子的故障检测方法(TSNS–LOF).首先使用训练样本在时空两个方向上的近邻集来标准化训练样本;然后在标准样本集上计算样本的局部离群因子,并确... 针对复杂过程数据的非线性、动态性和中心漂移等特征,提出了基于时空近邻标准化和局部离群因子的故障检测方法(TSNS–LOF).首先使用训练样本在时空两个方向上的近邻集来标准化训练样本;然后在标准样本集上计算样本的局部离群因子,并确定其上分位点作为检测控制限,进行在线故障检测.时空近邻标准化解决了复杂过程数据的非线性、动态性和中心漂移的问题;局部离群因子通过度量样本的相似度实现了故障样本和正常样本的分离.将TSNS–LOF应用于田纳西–伊斯曼过程(TE)过程进行故障检测实验,结果表明相对于主元分析、动态主元分析、k近邻、局部离群因子等方法, TSNS–LOF对故障预警更加及时且具有更高的故障检测率.理论分析和仿真实验说明TSNS–LOF方法适用于具有动态性或多模态特性或两者兼具的过程故障检测,能够更好地保障生产过程的安全性和产品的高质量. 展开更多
关键词 时空近邻标准化 局部离群因子 模型 主元分析 过程控制
在线阅读 下载PDF
基于局部保持投影–加权k近邻规则的多模态间歇过程故障检测策略 被引量:11
9
作者 张成 郭青秀 +1 位作者 冯立伟 李元 《控制理论与应用》 EI CAS CSCD 北大核心 2019年第10期1682-1689,共8页
针对多模态间歇过程故障检测问题,本文提出一种基于局部保持投影–加权k近邻规则(LPP--Wk NN)的故障检测策略.首先,应用局部保持投影(LPP)方法将原始数据投影到低维主元子空间;接下来,在主元子空间中,应用样本第k近邻的局部近邻集确定... 针对多模态间歇过程故障检测问题,本文提出一种基于局部保持投影–加权k近邻规则(LPP--Wk NN)的故障检测策略.首先,应用局部保持投影(LPP)方法将原始数据投影到低维主元子空间;接下来,在主元子空间中,应用样本第k近邻的局部近邻集确定每个样本的权重并计算权重统计量Dw;最后,应用核密度估计方法确定Dw控制限并进行故障检测.本文方法应用LPP对过程数据进行维数约减,既能够降低训练过程中离群点对模型的影响,又能够降低在线故障检测的计算复杂度.同时,加权k近邻规则(Wk NN)方法通过引入权重规则能够使得过程故障检测统计量分布具有单模态结构.相比传统的k NN统计量,本文引入的权重统计量具有更高的故障检测性能.通过数值例子和半导体蚀刻过程的仿真实验,并与主元分析(PCA), k NN, Wk NN, LPP--k NN等方法进行比较,实验结果验证了本文方法的有效性. 展开更多
关键词 局部保持投影 权重k近邻规则 间歇过程 故障检测
在线阅读 下载PDF
基于权重k近邻的多模态过程故障检测方法 被引量:12
10
作者 冯立伟 张成 +1 位作者 李元 谢彦红 《控制工程》 CSCD 北大核心 2019年第11期1986-1993,共8页
工业过程往往运行于多个生产模态,针对多模态过程数据的空间分布特点:中心漂移和模态协方差差异明显,提出了基于权重k近邻的故障检测方法(FD-wkNN)。首先在训练数据集中寻找第k近邻并计算近邻距离;其次把此k近邻与其前K近邻集的局部近... 工业过程往往运行于多个生产模态,针对多模态过程数据的空间分布特点:中心漂移和模态协方差差异明显,提出了基于权重k近邻的故障检测方法(FD-wkNN)。首先在训练数据集中寻找第k近邻并计算近邻距离;其次把此k近邻与其前K近邻集的局部近邻平均距离倒数作为权重,构建加权平均累积距离D作为统计量。加权平均累积距离可以有效降低中心漂移和协方差差异明显的影响;最后,利用核密度估计确定训练样本集统计量D的控制限,当新样本的加权平均累积距离大于控制限时,则其为故障;否则为正常。FD-wkNN具有对协方差较小模态的微弱故障的检测能力。通过模拟实例和青霉素发酵过程进行故障检测仿真实验,并与PCA,KPCA,FD-kNN等方法比较,验证了所提方法的有效性。 展开更多
关键词 主元分析 核主元分析 K近邻 多模态 故障检测
在线阅读 下载PDF
基于DPCA残差互异度的故障检测与诊断方法 被引量:7
11
作者 张成 戴絮年 李元 《自动化学报》 EI CAS CSCD 北大核心 2022年第1期292-301,共10页
针对动态主元分析方法中残差自相关性降低过程故障检测率问题,提出基于动态主元分析残差互异度的故障检测与诊断方法.首先,应用动态主元分析(Dynamic principal component analysis,DPCA)计算动态过程数据的残差得分;接下来,应用滑动窗... 针对动态主元分析方法中残差自相关性降低过程故障检测率问题,提出基于动态主元分析残差互异度的故障检测与诊断方法.首先,应用动态主元分析(Dynamic principal component analysis,DPCA)计算动态过程数据的残差得分;接下来,应用滑动窗口技术并结合互异度指标(Dissimilarity)来监控过程残差得分状态;最后,利用基于变量贡献图的方法进行过程故障诊断分析.本文方法通过DPCA捕获过程的动态特征,同时互异度指标区别于传统的平方预测误差(Square prediction error,SPE),它可以有效地对具有自相关性的残差得分进行过程状态监控.通过一个数值例子和Tennessee Eastman(TE)过程的仿真实验并与传统方法对比分析,仿真结果进一步证实了本文方法的有效性. 展开更多
关键词 动态主元分析 互异度 滑动窗口 故障诊断
在线阅读 下载PDF
基于方差最大化旋转变换的K近邻故障诊断策略 被引量:5
12
作者 张成 郭青秀 李元 《计算机应用研究》 CSCD 北大核心 2019年第8期2404-2409,共6页
为了提高FD-KNN针对潜隐变量在非线性和多模态过程中的故障检测能力,提出一种基于方差最大化旋转变换的K近邻故障检测与诊断策略。通过方差最大化方法建立旋转变换将原始数据变换到新的正交空间,在该正交空间中执行FD-KNN方法进行故障检... 为了提高FD-KNN针对潜隐变量在非线性和多模态过程中的故障检测能力,提出一种基于方差最大化旋转变换的K近邻故障检测与诊断策略。通过方差最大化方法建立旋转变换将原始数据变换到新的正交空间,在该正交空间中执行FD-KNN方法进行故障检测,并结合贡献图方法给出基于贡献图的故障诊断策略。通过一个非线性模拟实例,证明方法对潜隐变量故障诊断是有效的;同时,在典型非线性工业过程田纳西过程进行测试,与PCA、FD-KNN和PC-KNN方法进行对比,实验结果进一步证明了方法的有效性。 展开更多
关键词 K近邻 方差最大化旋转 故障检测 故障诊断 过程控制 主元分析
在线阅读 下载PDF
基于主元分析的滑动窗口累积和的微小故障检测 被引量:7
13
作者 谢彦红 杨滕 +2 位作者 贾冬妮 张成 李元 《计算机应用与软件》 北大核心 2023年第5期60-66,96,共8页
针对传统的多元统计分析方法对生产过程中微小故障检测不灵敏的问题,提出一种基于主元分析的滑动窗口累积和的微小故障检测方法(Principal Component Analysis and Moving Window Cumulative Sum,PCA-MWCUSUM)。利用主元分析(Principal ... 针对传统的多元统计分析方法对生产过程中微小故障检测不灵敏的问题,提出一种基于主元分析的滑动窗口累积和的微小故障检测方法(Principal Component Analysis and Moving Window Cumulative Sum,PCA-MWCUSUM)。利用主元分析(Principal Component Analysis,PCA)对数据降维,去除数据的相关性,计算得出样本的主元得分T^(2);利用滑动窗口技术将相邻某几个主元得分作为一个窗口,同时利用累加和(CUSUM)将每个窗口内T^(2)与T^(2)的均值误差进行叠加,以实现微小故障的累加;利用核密度估计确定故障检测控制限,实现对微小故障的检测。PCA-MWCUSUM通过增加故障工况的偏移尺度提高微小故障检测率。利用数值例子和田纳西-伊斯曼(Tennessee Eastman,TE)过程的仿真实验,并与ICA、PCA-SVDD和K近邻法(KNN)比较分析,实验结果进一步验证了该方法的有效性。 展开更多
关键词 主元分析 滑动窗口 累积和 微小故障检测
在线阅读 下载PDF
基于高斯分量标准化的K近邻故障检测策略
14
作者 张成 赵丽颖 +2 位作者 郑百顺 戴絮年 李元 《计算机应用与软件》 北大核心 2023年第1期90-97,共8页
针对复杂多工况工业过程故障检测问题,提出一种基于高斯分量标准化的K近邻(Gaussian Component Standardization K-Nearest Neighbor,GCS-KNN)故障检测策略。样本数据应用高斯混合模型(Gaussian Mixture Model,GMM)进行训练,将数据分解... 针对复杂多工况工业过程故障检测问题,提出一种基于高斯分量标准化的K近邻(Gaussian Component Standardization K-Nearest Neighbor,GCS-KNN)故障检测策略。样本数据应用高斯混合模型(Gaussian Mixture Model,GMM)进行训练,将数据分解为多个高斯分量;通过每个高斯分量的均值和协方差对该分量内的数据进行标准化处理;应用K近邻(K-Nearest Neighbor,KNN)算法对标准化后的样本进行检测。GCS-KNN通过高斯分量标准化消除数据的多模态特性,提高传统基于KNN检测方法的检测率。利用数值例子和半导体工业过程仿真实验验证了该方法的有效性,并与传统的主元分析(Principal Component Analysis,PCA)、KNN、动态主元分析(Dynamic PCA,DPCA)和加权KNN(Weighted KNN,WKNN)等方法进行对比,结果证实此方法具有显著的优势。 展开更多
关键词 高斯混合模型 多模态故障检测 K近邻规则 标准化 半导体蚀刻过程
在线阅读 下载PDF
基于主元分析得分重构差分的故障检测策略 被引量:22
15
作者 张成 郭青秀 +1 位作者 李元 高宪文 《控制理论与应用》 EI CAS CSCD 北大核心 2019年第5期774-782,共9页
基于主元分析(PCA)的统计过程控制方法通常假设数据的生成过程是独立同分布的.当数据存在多模态结构或过程变量非线性相关时, PCA方法的故障检测性能将受到影响.针对上述问题,本文提出一种基于PCA得分重构差分的故障检测策略.首先,应用... 基于主元分析(PCA)的统计过程控制方法通常假设数据的生成过程是独立同分布的.当数据存在多模态结构或过程变量非线性相关时, PCA方法的故障检测性能将受到影响.针对上述问题,本文提出一种基于PCA得分重构差分的故障检测策略.首先,应用PCA将输入空间分解为主元子空间和残差子空间;接下来,应用k近邻(kNN)规则重构当前样本得分向量并计算样本的得分重构差分向量;最后,计算得分重构差分向量的统计值并进行故障检测.本文方法不仅可以降低数据多模态和变量非线性相关等特征对过程故障检测的影响,同时可以降低统计量的自相关性、提高过程故障检测率.将本文方法在两个模拟例子和田纳西–伊斯曼(TE)过程中进行测试,并与PCA、核主元分析(KPCA)、动态主元分析(DPCA)和k 最近邻故障检测(FD–kNN)方法进行对比分析,测试结果证明了本文方法的有效性. 展开更多
关键词 主元分析 得分重构差分 K近邻 TE过程 故障检测
在线阅读 下载PDF
基于独立元的k近邻故障检测策略 被引量:12
16
作者 张成 高宪文 +2 位作者 徐涛 李元 逄玉俊 《控制理论与应用》 EI CAS CSCD 北大核心 2018年第6期805-812,共8页
k近邻故障检测(fault detection based on k nearest neighbors,FD–k NN)方法能够提高具有非线性和多模态特征过程的故障检测率.由于系统故障通常由潜隐变量异常变化引起,而该类型故障并不能被观测数据直观表现,因此直接在观测变量上执... k近邻故障检测(fault detection based on k nearest neighbors,FD–k NN)方法能够提高具有非线性和多模态特征过程的故障检测率.由于系统故障通常由潜隐变量异常变化引起,而该类型故障并不能被观测数据直观表现,因此直接在观测变量上执行FD–k NN方法,其故障检测率降低.本文旨在提高FD–k NN方法针对潜隐变量故障的检测能力,提出基于独立元的k近邻故障检测方法.首先,通过对观测数据应用独立元分析(independent component analysis,ICA)方法,获得独立元矩阵;接下来在独立元矩阵中应用FD–k NN方法进行故障检测.这等同于直接监控过程潜隐变量的变化,可以提高过程故障检测率.通过非线性实例仿真实验,证明本文方法检测潜隐变量故障是有效的;同时,在半导体蚀刻工艺过程的仿真实验中,与主元分析(principal component analysis,PCA)方法、核主元分析(kernel principal component analysis,KPCA)方法、基于主元分析的k近邻故障检测(principal component–based k nearest neighbor rule for fault detection,PC–k NN)方法和FD–k NN方法进行对比,实验结果进一步验证了本文方法的有效性. 展开更多
关键词 K近邻 独立元分析 主元分析 故障检测 间歇过程
在线阅读 下载PDF
基于k近邻主元得分差分的故障检测策略 被引量:11
17
作者 张成 高宪文 李元 《自动化学报》 EI CSCD 北大核心 2020年第10期2229-2238,共10页
针对具有非线性和多模态特征过程的故障检测问题,本文提出一种基于k近邻主元得分差分的故障检测策略.首先,通过主元分析(Principal component analysis,PCA)方法计算样本的真实得分.然后,应用样本的k近邻均值计算样本估计得分.接下来,... 针对具有非线性和多模态特征过程的故障检测问题,本文提出一种基于k近邻主元得分差分的故障检测策略.首先,通过主元分析(Principal component analysis,PCA)方法计算样本的真实得分.然后,应用样本的k近邻均值计算样本估计得分.接下来,通过上述两种得分计算样本的得分差分矩阵和残差矩阵,其中残差矩阵由样本的估计得分计算得到,这区别于传统方法.最后,在差分子空间和残差子空间中分别建立新的统计指标进行故障检测.值得注意的是本文的得分差分方法能够消除数据结构对过程故障检测的影响,同时,新的统计量能够提高过程的故障检测率.将本文方法在两个模拟例子和Tennessee Eastman(TE)过程中进行测试,并与传统方法如PCA、KPCA、DPCA和FD-k NN等进行对比分析,测试结果证明了本文方法的有效性. 展开更多
关键词 主元分析 得分差分 K近邻 多模态过程 TE过程 故障检测
在线阅读 下载PDF
基于局部近邻标准化和动态主元分析的故障检测策略 被引量:13
18
作者 张成 郭青秀 +1 位作者 冯立伟 李元 《计算机应用》 CSCD 北大核心 2018年第9期2730-2734,共5页
针对工业过程的动态和多模态特性,提出一种基于局部近邻标准化(LNS)和动态主元分析(DPCA)相结合的故障检测方法(LNS-DPCA)。首先,在训练数据集中寻找样本的K近邻集;然后,应用K近邻集的均值与标准差对当前样本进行标准化处理;最后,在新... 针对工业过程的动态和多模态特性,提出一种基于局部近邻标准化(LNS)和动态主元分析(DPCA)相结合的故障检测方法(LNS-DPCA)。首先,在训练数据集中寻找样本的K近邻集;然后,应用K近邻集的均值与标准差对当前样本进行标准化处理;最后,在新的数据集中应用DPCA方法确定T^2和SPE控制限进行故障检测。LNS方法能够消除过程的多模态特征,使得标准化后数据近似服从多元高斯分布,且保持过程离群点偏离正常样本轨迹;而结合DPCA方法则能够提高对具有动态特性过程的监视性能。利用数值例子和青霉素发酵过程进行仿真,并将测试结果与主元分析法(PCA)、DPCA、K近邻故障检测(FD-KNN)等方法进行对比分析,验证了LNS-DPCA方法的有效性。 展开更多
关键词 局部近邻标准化 动态主元分析 多模态 青霉素发酵过程 故障检测
在线阅读 下载PDF
基于密度标准误差的局部保持投影故障检测策略 被引量:4
19
作者 张成 郭青秀 +1 位作者 冯立伟 李元 《控制理论与应用》 EI CAS CSCD 北大核心 2020年第8期1757-1765,共9页
针对协方差结构具有显著差异的多模态过程故障检测问题,本文提出一种基于密度标准误差的局部保持投影故障检测策略(LPP-DSE).首先,根据样本距离矩阵确定样本截止距离;接下来,应用截止距离计算每个样本的本质密度及其前k近邻样本的估计密... 针对协方差结构具有显著差异的多模态过程故障检测问题,本文提出一种基于密度标准误差的局部保持投影故障检测策略(LPP-DSE).首先,根据样本距离矩阵确定样本截止距离;接下来,应用截止距离计算每个样本的本质密度及其前k近邻样本的估计密度;最后,通过样本的密度误差及其k近邻密度的标准差构建统计量并完成过程监控.本文方法通过应用局部保持投影(LPP)对过程数据进行维数约减可以保证过程监控的及时性;同时,通过设计密度标准误差(DSE)统计量可以有效提高多模态过程的故障检测率.此外,本文给出基于贡献图的诊断方法能够准确识别故障发生的原因.通过数值例子和半导体工业实例测试,并与主元分析、邻域保持嵌入、局部保持投影、k近邻故障检测等方法比较,实验结果进一步验证了LPP-DSE方法的有效性. 展开更多
关键词 局部保持投影 K近邻 多模态过程 主元分析 故障检测
在线阅读 下载PDF
基于判别核主元空间k近邻的批次过程监视 被引量:1
20
作者 张成 郭青秀 李元 《计算机应用》 CSCD 北大核心 2018年第8期2185-2191,共7页
针对批次过程非线性、多模态等特征,提出一种基于判别核主元k近邻(Dis-k PCk NN)的故障检测方法。首先,在核主元分析(k PCA)中,高斯核的窗宽参数依据样本类别标签在类内窗宽和类间窗宽中判别选取,使得核矩阵能有效提取数据的关联特征,... 针对批次过程非线性、多模态等特征,提出一种基于判别核主元k近邻(Dis-k PCk NN)的故障检测方法。首先,在核主元分析(k PCA)中,高斯核的窗宽参数依据样本类别标签在类内窗宽和类间窗宽中判别选取,使得核矩阵能有效提取数据的关联特征,保持数据的类别信息;其次,在核主元空间中引用k近邻规则代替传统的T2统计方法,k近邻规则可以有效处理主元空间非线性和多模态等特征的故障检测问题。数值模拟实例和半导体蚀刻工艺过程仿真实验表明:基于判别核主元k近邻方法可以有效地处理具有非线性和多模态结构特征的故障检测问题,提高计算的效率,减少内存的占用,并且故障检测率明显优于传统方法。 展开更多
关键词 判别核主元 K近邻 批次过程 故障检测 半导体
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部