期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
面向工业运维人机对话的意图和语义槽联合识别算法
1
作者 周超 王呈 +1 位作者 夏源 杜林 《计算机应用研究》 CSCD 北大核心 2024年第12期3645-3650,共6页
在工业运维人机对话任务中,为解决运维数据中包含复杂嵌套实体以及存在少量缺字、错字的问题,提出一种改进的BERT联合任务算法GP-GraphBERT,利用意图和语义槽识别任务的关联性提升对话性能。首先,由BERT得到隐藏层状态后,通过构建邻接... 在工业运维人机对话任务中,为解决运维数据中包含复杂嵌套实体以及存在少量缺字、错字的问题,提出一种改进的BERT联合任务算法GP-GraphBERT,利用意图和语义槽识别任务的关联性提升对话性能。首先,由BERT得到隐藏层状态后,通过构建邻接矩阵将其转换为图结构,嵌入加权残差图注意力网络(WRGAT)增强模型的邻居感知能力。其次,改进融合旋转式位置编码(rotary position embedding,RoPE)的全局指针机制(GlobalPointer),使模型能够无差别地识别常规实体和嵌套实体。最后,设计意图识别和语义槽识别任务的联合损失函数,利用两者的关联性提高预测精度,在模型训练过程中引入动态掩码处理,增强模型的鲁棒性和泛化能力。实验结果表明,GP-GraphBERT算法在工业运维人机对话数据集上意图识别和语义槽识别的F 1分数达到87.5%和86.4%,相较于原网络JointBERT分别提升9.2和3.0百分点,同时能够满足运维数据嵌套实体识别需求。实验充分验证了算法在联合识别任务中的性能。 展开更多
关键词 人机对话 意图识别 槽位填充 联合建模
在线阅读 下载PDF
联合边缘特征的物流驾驶员危险行为识别
2
作者 侯贵捷 王呈 +1 位作者 夏源 杜林 《计算机应用研究》 北大核心 2025年第4期1255-1261,共7页
准确识别物流驾驶员接打电话等危险行为是实现生产安全的重要一环。针对工业现场背景复杂、驾驶员手臂动作相似度高等问题,提出一种联合边缘特征的物流驾驶员危险行为识别算法EF-GCN(edge feature graph convolutional network)。首先,... 准确识别物流驾驶员接打电话等危险行为是实现生产安全的重要一环。针对工业现场背景复杂、驾驶员手臂动作相似度高等问题,提出一种联合边缘特征的物流驾驶员危险行为识别算法EF-GCN(edge feature graph convolutional network)。首先,提出基于自适应图卷积的空间感知模块,考虑人体运动过程中远离质心的边缘关节点,设计空间感知算法以提高权重分配。其次,设计时空边缘注意力模块,在时空均值化后添加边缘卷积,改善模型对边缘特征提取不充分的缺点;同时,引入可分离卷积SC block(separable convolution block),替换主干网络中的标准卷积,减少模型参数量。最后,构建相似特征识别网络SF-RN(similar feature recognition network),对接打电话、抽烟等手臂相似行为进行区分,强化算法对相似行为的识别能力。实验结果表明,EF-GCN较传统的时空图卷积网络识别精度提高10.4百分点,较基线模型提升3.2百分点,能够准确识别物流驾驶员的危险行为,验证了算法的有效性。 展开更多
关键词 边缘特征 空间感知 注意力模块 可分离卷积 相似特征识别
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部