期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于溶液图像时序特征的元素组分含量动态监测系统 被引量:1
1
作者 陆荣秀 陈明明 +1 位作者 杨辉 朱建勇 《计算机应用》 CSCD 北大核心 2021年第10期3075-3081,共7页
针对稀土萃取过程中组分含量难以实时监测以及现有组分含量检测方法耗时、耗内存的现状,设计了一种基于溶液图像时序特征的元素组分含量动态监测系统。首先使用图像采集装置获取萃取槽体溶液的时序图像,考虑萃取液颜色特性和单一颜色空... 针对稀土萃取过程中组分含量难以实时监测以及现有组分含量检测方法耗时、耗内存的现状,设计了一种基于溶液图像时序特征的元素组分含量动态监测系统。首先使用图像采集装置获取萃取槽体溶液的时序图像,考虑萃取液颜色特性和单一颜色空间的不全面性,采用主成分分析(PCA)方法在HSI和YUV融合的颜色空间提取图像的时序特征,并结合生产指标构造基于鲸鱼优化算法(WOA)的最小二乘支持向量机(LSSVM)分类器来对工况状态进行判断。然后当工况处于非最佳状态时,在HSV颜色空间对图像提取颜色直方图和颜色矩特征,并开发以溶液图像间的混合特征差值的线性加权值为相似度度量的图像检索系统,从而获取组分含量值。最后进行镨/钕萃取槽体混合溶液测试,结果表明该系统能够实现元素组分含量的动态监测。 展开更多
关键词 稀土萃取 时序特征 主成分分析 鲸鱼优化算法 最小二乘支持向量机 组分含量 图像检索
在线阅读 下载PDF
基于图嵌入的正交局部保持投影无监督特征选择
2
作者 朱建勇 李兆祥 +2 位作者 徐彬 杨辉 聂飞平 《计算机科学》 CSCD 北大核心 2023年第S02期540-548,共9页
传统的基于图学习的无监督特征选择算法通常采用稀疏正则化方法来选择特征,但这种方法过于依赖于图学习的效率,并且存在正则化参数调优困难等问题。为解决这些问题,针对性地提出了一种基于图嵌入学习的正交局部保持投影无监督特征选择(O... 传统的基于图学习的无监督特征选择算法通常采用稀疏正则化方法来选择特征,但这种方法过于依赖于图学习的效率,并且存在正则化参数调优困难等问题。为解决这些问题,针对性地提出了一种基于图嵌入学习的正交局部保持投影无监督特征选择(Orthogonal Locality Preserving Projection Unsupervised Feature Selection via Graph Embedding,OLPPFS)算法。首先,利用能够保持数据局部几何流形结构的局部保持投影方法增强数据的线性映射能力,同时约束正交方向投影以方便数据重构;其次,通过图嵌入学习方法快速构建稀疏相似图来描述样本数据的内在结构;接着,采用l_(2,0)范数约束投影矩阵的值,准确选择指定数目的判别性特征子集;最后,针对l_(2,0)范数NP难题,设计一种有效求解l_(2,0)范数问题的无参迭代算法求解该模型。仿真结果表明了所提算法的有效性和优越性。 展开更多
关键词 无监督特征选择 正交局部保持投影 图嵌入学习 l_(2 0)范数 无参迭代算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部