期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合时序Sentinel数据多特征优选的南方丘陵区油茶种植区提取 被引量:3
1
作者 李恒凯 王洁 +1 位作者 周艳兵 龙北平 《农业机械学报》 EI CAS CSCD 北大核心 2024年第7期241-251,共11页
油茶作为江西省经济林树种之一,也是江西省特色优势产业,准确获取其空间分布在产量估算、生产管理和政策制定等方面具有重要意义。本研究针对南方多云多雨气候导致光学影像不足,以及丘陵山区地形破碎问题,以江西省宜春市袁州区为研究区... 油茶作为江西省经济林树种之一,也是江西省特色优势产业,准确获取其空间分布在产量估算、生产管理和政策制定等方面具有重要意义。本研究针对南方多云多雨气候导致光学影像不足,以及丘陵山区地形破碎问题,以江西省宜春市袁州区为研究区,采用时序Sentinel系列影像数据和SRTM DEM数据为数据源,构建和优选了光谱特征、植被-水体指数、红边指数、雷达特征、地形特征和纹理特征共125个特征变量,其中,纹理特征采用累计差法(Δf)对比15种不同尺度窗口,计算Sentinel-1和Sentinel-2影像最佳纹理特征。基于ReliefF特征优选算法和随机森林分类算法,设计了8种特征组合方案开展实验,探讨不同特征类型对油茶提取精度的影响。结果表明:利用累计差法计算出的Sentinel-1和Sentinel-2的最佳纹理特征窗口尺寸均为35×35,最佳纹理特征组合为均值(Mean)、方差(Variance)和对比度(Contrast);在光谱特征、植被-水体指数的基础上加入不同特征对油茶进行分类,不同类型特征对油茶提取的有利程度由大到小依次为S2纹理特征、S1纹理特征、地形特征、雷达特征、红边指数,相比于单一光谱和指数特征,纹理特征的加入可大幅度提高分类精度。多特征协同分类结果优于单特征分类结果,基于特征优选的油茶提取精度最高;基于ReliefF算法特征优选后的方案精度最高,总体精度为88.29%,Kappa系数为0.81。本研究利用时序Sentinel系列遥感影像和DEM地形数据,构建了针对多云雨南方丘陵山区的大范围油茶遥感提取方法,可为中国南方丘陵区域油茶资源调查与监测提供参考。 展开更多
关键词 油茶 种植区提取 Sentinel-1 Sentinel-2 特征优选 累计差 RELIEFF算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部