本文首先阐述了矩阵填充的应用背景,给出了矩阵填充的数学模型,详细分析了矩阵填充中的低秩特性和非相干特性,重点介绍了矩阵填充三种典型的重构算法:SVT(Singular Value Thresholding)算法、ADMiRA(Atomic Decomposition for Minimum R...本文首先阐述了矩阵填充的应用背景,给出了矩阵填充的数学模型,详细分析了矩阵填充中的低秩特性和非相干特性,重点介绍了矩阵填充三种典型的重构算法:SVT(Singular Value Thresholding)算法、ADMiRA(Atomic Decomposition for Minimum Rank Approximation)算法和SVP(Singular Value Projection)算法,文中的仿真实验对这三种算法的重构性能进行了比较;文章随后分析了矩阵填充和压缩感知的联系;最后介绍了矩阵填充在协同过滤、系统识别、传感器网络、图像处理、稀疏信道估计、频谱感知以及多媒体编码和通信等方面的的应用。展开更多
文摘本文首先阐述了矩阵填充的应用背景,给出了矩阵填充的数学模型,详细分析了矩阵填充中的低秩特性和非相干特性,重点介绍了矩阵填充三种典型的重构算法:SVT(Singular Value Thresholding)算法、ADMiRA(Atomic Decomposition for Minimum Rank Approximation)算法和SVP(Singular Value Projection)算法,文中的仿真实验对这三种算法的重构性能进行了比较;文章随后分析了矩阵填充和压缩感知的联系;最后介绍了矩阵填充在协同过滤、系统识别、传感器网络、图像处理、稀疏信道估计、频谱感知以及多媒体编码和通信等方面的的应用。
基金Supported by the NSFC(11426118,11171160)Natural Science Foundation of Jiangsu Province(BK20140767)+1 种基金Natural Science Foundation of the Jiangsu Higher Education Institutions(14KJB110004)Qing Lan Project of Jiangsu Province and Colonellevel Topics(JSNU-ZY-01)
文摘本文不依赖于Laine Ⅰ和Yang C C^[1]在2007年获得的一个结果,给出了复差分方程Wittich定理的一个新证明.