热电池作为一种一次贮备电池,具有高比能、高功率密度等优势,然而开发高比容量与高热稳定性的新型正极材料以适应新时期的热电池需求仍然存在巨大的挑战。Wadsley-Roth晶体剪切结构的铌钨氧化物作为锂离子电池负极材料表现出优异的倍率...热电池作为一种一次贮备电池,具有高比能、高功率密度等优势,然而开发高比容量与高热稳定性的新型正极材料以适应新时期的热电池需求仍然存在巨大的挑战。Wadsley-Roth晶体剪切结构的铌钨氧化物作为锂离子电池负极材料表现出优异的倍率和循环循环性,其中Nb_(12)WO_(33)因内部具有独特的3D隧道,可以为Li+提供快速的脱嵌通道,因而具有优异的储锂性能。鉴于其具有较好的热稳定性及电化学稳定性,本文首次提出将Nb_(12)WO_(33)作为热电池正极材料,并在室温下使用电化学阻抗谱(EIS)来探究材料内部电子电导率阻抗变化规律。研究发现Nb_(12)WO_(33)电极电化学阻抗谱测试的Nyquist图显示在工作平台电位范围内,高、中频区出现了三个圆弧的独特现象,这主要归属于电子在Nb_(12)WO_(33)电极内部的传导,而与电子电导相关的电阻呈现先增大后降低的规律。采用该材料构筑的热电池单体电池在500℃、500 m A·g^(-1)的电流密度(截止电压1.5V)下放电,其具有436.8m Ah·g^(-1)的高比容量,脉冲放电的平均极化内阻为0.52Ω。因此,Nb_(12)WO_(33)作为高比容量、高热稳定性热电池的正极材料非常具有潜力,本研究为其他铌钨氧化物作为热电池正极材料的研究开辟了新道路。展开更多
作为一种新型碳基析氢反应催化剂,磷掺杂炭材料近年来已引起了较大关注。然而到目前为止,磷掺杂炭材料中的C―P物种对于氢析出活性的作用尚未被揭示。为了探讨碳基催化剂中C―P物种对其氢析出性能的影响,制备了4种具有不同石墨、吡啶、...作为一种新型碳基析氢反应催化剂,磷掺杂炭材料近年来已引起了较大关注。然而到目前为止,磷掺杂炭材料中的C―P物种对于氢析出活性的作用尚未被揭示。为了探讨碳基催化剂中C―P物种对其氢析出性能的影响,制备了4种具有不同石墨、吡啶、吡咯类磷物种分布的磷掺杂碳纳米管,并探讨了这3种磷物种的含量和氢析出活性之间的关系。结果表明在酸性介质中,一种在电流密度为10 mA cm^(−2)时过电位为0.266 V的磷掺杂碳纳米管展现出较高的氢析出活性。同时,密度泛函理论计算表明较高的氢析出性能主要是由石墨磷分解产生的五元环和九元环缺陷所引起,这为磷掺杂碳基催化剂表面的析氢反应提供更为深入的理解。展开更多
文摘热电池作为一种一次贮备电池,具有高比能、高功率密度等优势,然而开发高比容量与高热稳定性的新型正极材料以适应新时期的热电池需求仍然存在巨大的挑战。Wadsley-Roth晶体剪切结构的铌钨氧化物作为锂离子电池负极材料表现出优异的倍率和循环循环性,其中Nb_(12)WO_(33)因内部具有独特的3D隧道,可以为Li+提供快速的脱嵌通道,因而具有优异的储锂性能。鉴于其具有较好的热稳定性及电化学稳定性,本文首次提出将Nb_(12)WO_(33)作为热电池正极材料,并在室温下使用电化学阻抗谱(EIS)来探究材料内部电子电导率阻抗变化规律。研究发现Nb_(12)WO_(33)电极电化学阻抗谱测试的Nyquist图显示在工作平台电位范围内,高、中频区出现了三个圆弧的独特现象,这主要归属于电子在Nb_(12)WO_(33)电极内部的传导,而与电子电导相关的电阻呈现先增大后降低的规律。采用该材料构筑的热电池单体电池在500℃、500 m A·g^(-1)的电流密度(截止电压1.5V)下放电,其具有436.8m Ah·g^(-1)的高比容量,脉冲放电的平均极化内阻为0.52Ω。因此,Nb_(12)WO_(33)作为高比容量、高热稳定性热电池的正极材料非常具有潜力,本研究为其他铌钨氧化物作为热电池正极材料的研究开辟了新道路。
文摘作为一种新型碳基析氢反应催化剂,磷掺杂炭材料近年来已引起了较大关注。然而到目前为止,磷掺杂炭材料中的C―P物种对于氢析出活性的作用尚未被揭示。为了探讨碳基催化剂中C―P物种对其氢析出性能的影响,制备了4种具有不同石墨、吡啶、吡咯类磷物种分布的磷掺杂碳纳米管,并探讨了这3种磷物种的含量和氢析出活性之间的关系。结果表明在酸性介质中,一种在电流密度为10 mA cm^(−2)时过电位为0.266 V的磷掺杂碳纳米管展现出较高的氢析出活性。同时,密度泛函理论计算表明较高的氢析出性能主要是由石墨磷分解产生的五元环和九元环缺陷所引起,这为磷掺杂碳基催化剂表面的析氢反应提供更为深入的理解。