期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Haar小波下采样优化YOLOv9的道路车辆和行人检测 被引量:12
1
作者 李琳 靳志鑫 +1 位作者 俞晓磊 王安红 《计算机工程与应用》 CSCD 北大核心 2024年第20期207-214,共8页
在当前智能化、信息化的大背景下,为了实现无人驾驶模式复杂环境中智能收集道路的行人和车辆目标,提出了一种基于Haar小波下采样(Haar wavelet downsampling,HWD)的YOLOv9算法(HWD_YOLOv9)用于车辆与行人目标检测。Haar小波的下采样操作... 在当前智能化、信息化的大背景下,为了实现无人驾驶模式复杂环境中智能收集道路的行人和车辆目标,提出了一种基于Haar小波下采样(Haar wavelet downsampling,HWD)的YOLOv9算法(HWD_YOLOv9)用于车辆与行人目标检测。Haar小波的下采样操作,降低特征图的空间分辨率,尽可能保留了边缘、纹路等细节信息,有效降低了信息的不确定性。采用交叉熵损失和广义骰子损失之和作为网络的损失函数,可以有效地度量概率分布之间的差异,且逐像素进行骰子损失计算,便于优化网络。实验结果显示,在KITTY数据集上,所提模型的平均精度均值达到了95.86%,检测帧率达到了179 FPS。与YOLOv9相比,改进后的算法能够精确地识别出复杂道路上不同尺度的车辆与行人,改善了原检测算法中的计算容量的冗余和小目标的漏检问题,为智能化的无人驾驶提供了视觉技术支持。 展开更多
关键词 小目标检测 车辆行人 YOLOv9 深度学习 Haar小波下采样
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部