期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于粒子群优化最小二乘支持向量机的城市货运生成预测模型——以合肥都市圈为例
1
作者
李盈
何流
《交通与港航》
2023年第4期28-34,共7页
城市货运量预测是一个复杂的非线性过程。该文提出一种基于粒子群(PSO)优化最小二乘支持向量机(LSSVM)的城市货运生成预测模型。首先选取社会经济、工业、地理特征作为货运量主要影响因素;其次利用PSO算法优化LSSVM特征参数,提高LSSVM...
城市货运量预测是一个复杂的非线性过程。该文提出一种基于粒子群(PSO)优化最小二乘支持向量机(LSSVM)的城市货运生成预测模型。首先选取社会经济、工业、地理特征作为货运量主要影响因素;其次利用PSO算法优化LSSVM特征参数,提高LSSVM准确率;最后以合肥都市圈2014—2020年数据为例,验证该方法的有效性。LSSVM预测平均相对误差为26%,PSO算法优化LSSVM预测平均相对误差为12%。实验结果表明,基于PSO算法优化LSSVM的城市货运生成预测模型具有较高预测精度,能够有效揭示货运量与相关变量间的非线性映射关系。
展开更多
关键词
需求预测模型
城市货运生成
最小二乘支持向量机
粒子群优化
在线阅读
下载PDF
职称材料
题名
基于粒子群优化最小二乘支持向量机的城市货运生成预测模型——以合肥都市圈为例
1
作者
李盈
何流
机构
南京理工大学
江苏省智能交通信息感知与数据分析工程实验室
江苏省
现代城市
交通
技术
江苏
高校协同创新中心
出处
《交通与港航》
2023年第4期28-34,共7页
基金
国家重点研发计划政府间国际科技创新合作重点专项项目(2019YFE0123800)。
文摘
城市货运量预测是一个复杂的非线性过程。该文提出一种基于粒子群(PSO)优化最小二乘支持向量机(LSSVM)的城市货运生成预测模型。首先选取社会经济、工业、地理特征作为货运量主要影响因素;其次利用PSO算法优化LSSVM特征参数,提高LSSVM准确率;最后以合肥都市圈2014—2020年数据为例,验证该方法的有效性。LSSVM预测平均相对误差为26%,PSO算法优化LSSVM预测平均相对误差为12%。实验结果表明,基于PSO算法优化LSSVM的城市货运生成预测模型具有较高预测精度,能够有效揭示货运量与相关变量间的非线性映射关系。
关键词
需求预测模型
城市货运生成
最小二乘支持向量机
粒子群优化
Keywords
Demand forecasting models
Urban freight generation
Least squares support vector machines
Particle swarm optimization
分类号
P208 [天文地球—地图制图学与地理信息工程]
U492.3 [交通运输工程—交通运输规划与管理]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于粒子群优化最小二乘支持向量机的城市货运生成预测模型——以合肥都市圈为例
李盈
何流
《交通与港航》
2023
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部