期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于卷积神经网络建立中药材自动识别的人工智能模型及应用程序 被引量:3
1
作者 王甘红 张子豪 +3 位作者 奚美娟 夏开建 周燕婷 陈健 《中国全科医学》 北大核心 2025年第9期1128-1136,共9页
背景传统中药材检测手段依赖主观经验,难以满足中药材在准确分类与鉴别方面的需求。目的基于卷积神经网络(CNN)开发一款能够自动识别163种中药材的人工智能模型及电脑端应用程序。方法2020年1月—2024年6月,采集了两个中药材数据集进行... 背景传统中药材检测手段依赖主观经验,难以满足中药材在准确分类与鉴别方面的需求。目的基于卷积神经网络(CNN)开发一款能够自动识别163种中药材的人工智能模型及电脑端应用程序。方法2020年1月—2024年6月,采集了两个中药材数据集进行深度学习模型的训练、验证和测试,共包含163种中药材。通过准确率、灵敏度、特异度、精确率、受试者工作特征(ROC)曲线下面积(AUC)、F1分数等指标来衡量CNN模型的性能。在模型训练完成后,基于PyQt5技术开发了一款应用程序,供临床便携使用。结果本研究共纳入了276767张图像,开发了EfficientNetB0、ResNet50、MobileNetV3、VGG19和ResNet185种模型,通过性能比较,EfficientNet_B0模型在验证集上取得了最高的准确率(99.0%)和AUC(0.9942),被选为最佳模型。在测试集上,最佳模型对所有中药类别识别的准确率为99.0%、灵敏度为99.0%、特异度为100.0%、AUC为1.0,展现出良好的性能。结论基于卷积神经网络开发的深度学习模型能够快速准确地识别163种中药材,借助其高灵敏度的识别能力,为医师对中药材的鉴别提供有力辅助。 展开更多
关键词 中药材 模式识别 自动 中药药材学 应用程序 人工智能 PyQt5 卷积神经网络
在线阅读 下载PDF
基于YOLO神经网络构建压力性损伤自动检测和分期的人工智能模型 被引量:5
2
作者 王珍妮 须月萍 +2 位作者 夏开建 徐晓丹 顾丽华 《中国全科医学》 CAS 北大核心 2024年第36期4582-4590,共9页
背景随着人口老龄化,压力性损伤(PI)的发病率逐渐增加,这不仅严重影响了患者的生存质量,还增加了医保支出。然而,PI的早期发现和准确分期极大地依赖于专业培训。目的构建并测试一个用于PI自动检测和分期的人工智能模型,以提高PI诊断的... 背景随着人口老龄化,压力性损伤(PI)的发病率逐渐增加,这不仅严重影响了患者的生存质量,还增加了医保支出。然而,PI的早期发现和准确分期极大地依赖于专业培训。目的构建并测试一个用于PI自动检测和分期的人工智能模型,以提高PI诊断的实时性、准确性和客观性。方法选取常熟市第一人民医院压疮电子化管理系统中2021年1月—2024年2月的693张PI图像,将图像随机划分为训练集(551张)和测试集(142张),并按照2019年美国压疮咨询委员会(NPUAP)制订的PI预防和治疗指南分为6期,包括:Ⅰ期154张、Ⅱ期188张、Ⅲ期160张、Ⅳ期82张、深部组织损伤期57张、不可分期52张。利用基于5种不同版本的YOLOv8[nano(n)、small(s)、medium(m)、large(l)和extra large(x)]神经网络和迁移学习,建立针对PI的深度学习目标检测模型。模型评价指标包括精确度、准确率、灵敏度、特异度及检测速度等。最后,通过Ultralytics Hub平台将模型部署到手机应用程序(App)中,实现AI模型在临床工作中的应用。结果在对包含142张PI图像的测试集进行评估时,YOLOv8l版本在确保高精确度(0.827)的同时,也展现了较快的推理速度(68.49帧/s),与其他YOLO版本相比,在精确度与速度之间取得了最佳的平衡。具体而言,其在所有类别上的整体准确率为93.18%,灵敏度为76.52%,特异度为96.29%,假阳性率为3.72%。在6个PI分期中,模型预测Ⅰ期的准确率最高,达到95.97%;预测Ⅱ期、Ⅲ期、Ⅳ期、深部组织损伤期、不可分期分别取得了91.28%、91.28%、91.95%、95.30%和93.29%的准确率。就处理速度而言,YOLOv8l处理142张图像的总耗时为2.07 s,平均每秒可处理68.49张PI图像。结论基于YOLOv8l网络的AI模型能够快速、准确地对PI进行检测和分期。将该模型部署到手机App中,能够在临床实践中便携使用,具有很大的临床应用潜力。 展开更多
关键词 压力性损伤 人工智能 深度学习 YOLO 目标检测 神经网络模型 APP
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部