This paper proposes a Mach Zehnder/Fabry Perot Interferometer(MZI/FPI)fiber sensor based on Single-mode Fiber(SMF)and Hollow-core Fiber(HCF),which has high sensitivity to temperature and lateral loads.The proposed dev...This paper proposes a Mach Zehnder/Fabry Perot Interferometer(MZI/FPI)fiber sensor based on Single-mode Fiber(SMF)and Hollow-core Fiber(HCF),which has high sensitivity to temperature and lateral loads.The proposed device consists of two single-mode fiber cones formed by manually controlling the fusion splicer and an air cavity formed by fusing a section of hollow-core fiber.The structure of the sensor is a double cone cascaded air cavity.At the beginning of the design,we compared the basic transmission spectra of single cone structure and double cone structure experimentally,and therefore chose to use double cone structure and air cavity cascade.Light undergoes its first reflection at the first interface between the single-mode fiber and the air cavity structure,and its second reflection at the second interface between the air cavity structure and the single-mode fiber.The two reflected light waves produced by the two reflections form FP interference,which can be used to measure lateral loads.The transmitted light is excited through the first cone,and a portion of the core mode light is excited to the cladding,while another portion of the core mode light continues to propagate in the core.The light couples at the second cone,and the cladding mode light couples back into the core,forming MZ interference with the core mode light,which can be used to measure temperature.The use of hollow-core fiber to form an air cavity has little effect on transmitted light,while avoiding the problem of crosstalk in dual parameter measurements.By designing temperature and lateral load experiments,this article verifies the sensitivity characteristics of this sensor to temperature and lateral loads.A significant redshift phenomenon was observed in the temperature experiment.A significant redshift phenomenon also occurred in the lateral load experiment.Through wavelength demodulation,the experimental results show that the wavelength sensitivity of the sensor to temperature is 56.29 pm/℃in the range of 30℃to 80℃.The wavelength sensitivity of the sensor to lateral loads is 1.123 nm/N in the range of 0~5 N.In addition,we have prepared multiple sets of fiber optic sensors with this structure and conducted repeated experiments to verify that the sensing performance of this structure of fiber optic sensors for temperature and lateral load is relatively stable.Also,the different waist diameters of cones will have a certain impact on the transmission spectrum of MZ,while the length of the air cavity will also have a certain impact on the reflection spectrum of FP.This article lists some fiber optic sensors for dual parameter measurement of temperature and lateral load.Compared with the listed sensors,the fiber optic sensor proposed in this article has better sensitivity to temperature and lateral load.And the fiber optic sensor proposed in this article has a simple manufacturing process,low production cost,and good performance,which has certain prospects in scientific research and industrial production.展开更多
CF_3I是公认的用以代替SF6的新型环保绝缘气体,其在外电场中的具体性质的研究至关重要.利用密度泛函理论(DFT),在B3LYP/DGDZVP基组水平上,从分子结构角度研究了CF_3I气体在外电场(-0. 02 a. u.~0. 02 a. u.)作用下的光谱特征和解离特性...CF_3I是公认的用以代替SF6的新型环保绝缘气体,其在外电场中的具体性质的研究至关重要.利用密度泛函理论(DFT),在B3LYP/DGDZVP基组水平上,从分子结构角度研究了CF_3I气体在外电场(-0. 02 a. u.~0. 02 a. u.)作用下的光谱特征和解离特性.计算结果表明,沿C至I方向的电场增强时:C-I键键长单调增大,能隙E_g单调减小;分子总能量先增大后减小,偶极矩先减小后增大;费米能级EF单调减小,但当电场增至C至I方向0. 010 a. u.时,费米能级EF出现局部极大值.外电场对分子红外光谱的影响表现为:沿C至I方向电场强度增大时,四个振动频率红移(包括最高峰),其余两个蓝移.分子的解离特性表现为:沿C至I方向强度超过0. 025 a. u.的电场可使C-I键断裂.以上结果为CF_3I或其与其混合物在外电场下的特性研究提供了参考.展开更多
基金National Key R&D Program of China(2017YFC0212700)National Natural Science Foundation of China(11304157)+1 种基金“Six Talent Peaks”project in Jiangsu Province(2015-JNHB-011)College Students’Practice Innovation Training Program of Nuist(201810300033Z)
基金National Natural Science Foundation of China(Nos.6207509,U2001601,61975084)the Jiangsu Provincial Key Research and Development Program(Nos.BE2022079,BE2022055-2)。
文摘This paper proposes a Mach Zehnder/Fabry Perot Interferometer(MZI/FPI)fiber sensor based on Single-mode Fiber(SMF)and Hollow-core Fiber(HCF),which has high sensitivity to temperature and lateral loads.The proposed device consists of two single-mode fiber cones formed by manually controlling the fusion splicer and an air cavity formed by fusing a section of hollow-core fiber.The structure of the sensor is a double cone cascaded air cavity.At the beginning of the design,we compared the basic transmission spectra of single cone structure and double cone structure experimentally,and therefore chose to use double cone structure and air cavity cascade.Light undergoes its first reflection at the first interface between the single-mode fiber and the air cavity structure,and its second reflection at the second interface between the air cavity structure and the single-mode fiber.The two reflected light waves produced by the two reflections form FP interference,which can be used to measure lateral loads.The transmitted light is excited through the first cone,and a portion of the core mode light is excited to the cladding,while another portion of the core mode light continues to propagate in the core.The light couples at the second cone,and the cladding mode light couples back into the core,forming MZ interference with the core mode light,which can be used to measure temperature.The use of hollow-core fiber to form an air cavity has little effect on transmitted light,while avoiding the problem of crosstalk in dual parameter measurements.By designing temperature and lateral load experiments,this article verifies the sensitivity characteristics of this sensor to temperature and lateral loads.A significant redshift phenomenon was observed in the temperature experiment.A significant redshift phenomenon also occurred in the lateral load experiment.Through wavelength demodulation,the experimental results show that the wavelength sensitivity of the sensor to temperature is 56.29 pm/℃in the range of 30℃to 80℃.The wavelength sensitivity of the sensor to lateral loads is 1.123 nm/N in the range of 0~5 N.In addition,we have prepared multiple sets of fiber optic sensors with this structure and conducted repeated experiments to verify that the sensing performance of this structure of fiber optic sensors for temperature and lateral load is relatively stable.Also,the different waist diameters of cones will have a certain impact on the transmission spectrum of MZ,while the length of the air cavity will also have a certain impact on the reflection spectrum of FP.This article lists some fiber optic sensors for dual parameter measurement of temperature and lateral load.Compared with the listed sensors,the fiber optic sensor proposed in this article has better sensitivity to temperature and lateral load.And the fiber optic sensor proposed in this article has a simple manufacturing process,low production cost,and good performance,which has certain prospects in scientific research and industrial production.
基金Supported by the National Natural Science Foundation of China(U1932149,21763027)Natural Science Foundation of Xinjiang(2017D01B36)Natural Science Foundation of the Higher Education Institutions of Jiangsu Province(18KJA140002)
文摘CF_3I是公认的用以代替SF6的新型环保绝缘气体,其在外电场中的具体性质的研究至关重要.利用密度泛函理论(DFT),在B3LYP/DGDZVP基组水平上,从分子结构角度研究了CF_3I气体在外电场(-0. 02 a. u.~0. 02 a. u.)作用下的光谱特征和解离特性.计算结果表明,沿C至I方向的电场增强时:C-I键键长单调增大,能隙E_g单调减小;分子总能量先增大后减小,偶极矩先减小后增大;费米能级EF单调减小,但当电场增至C至I方向0. 010 a. u.时,费米能级EF出现局部极大值.外电场对分子红外光谱的影响表现为:沿C至I方向电场强度增大时,四个振动频率红移(包括最高峰),其余两个蓝移.分子的解离特性表现为:沿C至I方向强度超过0. 025 a. u.的电场可使C-I键断裂.以上结果为CF_3I或其与其混合物在外电场下的特性研究提供了参考.