期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于空地协同的动态车载边缘任务卸载方法
1
作者 崔萌萌 施静燕 项昊龙 《计算机工程》 北大核心 2025年第9期25-37,共13页
为了进一步优化车载服务的服务质量(QoS),移动边缘计算(MEC)被深度整合于车联网(IoV)中,旨在为车辆提供地理位置较近的计算资源,降低任务处理延迟和能耗。然而,传统的MEC服务器部署主要依赖于地面基站(BS),这不仅导致高昂的部署成本,而... 为了进一步优化车载服务的服务质量(QoS),移动边缘计算(MEC)被深度整合于车联网(IoV)中,旨在为车辆提供地理位置较近的计算资源,降低任务处理延迟和能耗。然而,传统的MEC服务器部署主要依赖于地面基站(BS),这不仅导致高昂的部署成本,而且限制其覆盖范围,难以确保为所有车辆提供无间断服务。为了应对上述挑战,空地协同IoV作为一种新兴的技术方案应运而生。无人机(UAV)能够借助其视距链路的灵活性动态地协助路边单元(RSU),为车辆用户提供更为灵活的计算资源,进而保障车载服务的连续性和高效性。提出一种基于空地协同的动态车载边缘任务卸载方法(DVETOM)。该方法采用车-路-空架构,构建了车辆到RSU(V2R)链路和车辆到UAV(V2U)链路。针对车辆任务的本地执行、卸载至RSU执行和卸载至UAV执行3种模式分别构建传输模型和计算模型,并以最小化系统时延和能耗作为联合优化目标构建目标函数。DVETOM将任务卸载问题转化为马尔可夫决策过程(MDP),基于深度强化学习(DRL)的分布式深度确定性策略梯度(D4PG)算法优化任务卸载策略。与5种基准方法进行对比,实验结果表明,DVETOM在提升车辆用户QoS的同时,在降低系统时延方面优于现有方法3.45%~23.7%,在降低系统能耗方面优于现有方法5.8%~23.47%。综上所述,DVETOM有效地优化了IoV中的车载边缘任务卸载,为IoV用户提供了更高效、更节能的服务解决方案,展现了其在智能交通系统领域的广泛应用潜力。 展开更多
关键词 车联网 边缘计算 空地协同 任务卸载 深度强化学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部