为了提高电动汽车制动能量回收效率,对电动汽车制动能量再生系统及机电制动力分配控制策略进行了研究。以制动强度为依据划分制动模式,提出了以电子制动力分配(Electronic Brake force Distribution,EBD)来分配前、后轴制动力的电动机...为了提高电动汽车制动能量回收效率,对电动汽车制动能量再生系统及机电制动力分配控制策略进行了研究。以制动强度为依据划分制动模式,提出了以电子制动力分配(Electronic Brake force Distribution,EBD)来分配前、后轴制动力的电动机制动与机械制动的协调控制策略方法,建立了相应的再生制动系统前、后轴制动力分配控制策略模型,并且对控制模型进行了仿真分析。仿真结果表明,提出的控制策略方法不仅可以提高制动能量回收的效率,还可以有效防止车轮在低附着路面上抱死,保证了车辆的稳定性与安全性。展开更多
针对给定工况下增程式电动汽车燃料最优控制问题,提出了基于动态规划算法的全局优化控制策略。通过分析整车动力系统的能量流以及能源管理控制原理,建立了以蓄电池的荷电状态(State of Charge,SOC)为状态变量和发动机-发电机组成的增程...针对给定工况下增程式电动汽车燃料最优控制问题,提出了基于动态规划算法的全局优化控制策略。通过分析整车动力系统的能量流以及能源管理控制原理,建立了以蓄电池的荷电状态(State of Charge,SOC)为状态变量和发动机-发电机组成的增程器(Auxiliary Power Unit,APU)输出功率为控制变量的最优控制数学模型,并以油耗最低为目标函数,采用离散动态规划方法,建立动态规划递归方程,求解其最优控制策略。基于ADVISOR平台对整车进行仿真,仿真结果表明,与功率跟随式控制策略相比,基于动态规划的控制策略能够在蓄电池和APU之间合理地分配功率,可以有效提高增程式电动汽车的燃油经济性。展开更多
文摘为了提高电动汽车制动能量回收效率,对电动汽车制动能量再生系统及机电制动力分配控制策略进行了研究。以制动强度为依据划分制动模式,提出了以电子制动力分配(Electronic Brake force Distribution,EBD)来分配前、后轴制动力的电动机制动与机械制动的协调控制策略方法,建立了相应的再生制动系统前、后轴制动力分配控制策略模型,并且对控制模型进行了仿真分析。仿真结果表明,提出的控制策略方法不仅可以提高制动能量回收的效率,还可以有效防止车轮在低附着路面上抱死,保证了车辆的稳定性与安全性。
文摘针对给定工况下增程式电动汽车燃料最优控制问题,提出了基于动态规划算法的全局优化控制策略。通过分析整车动力系统的能量流以及能源管理控制原理,建立了以蓄电池的荷电状态(State of Charge,SOC)为状态变量和发动机-发电机组成的增程器(Auxiliary Power Unit,APU)输出功率为控制变量的最优控制数学模型,并以油耗最低为目标函数,采用离散动态规划方法,建立动态规划递归方程,求解其最优控制策略。基于ADVISOR平台对整车进行仿真,仿真结果表明,与功率跟随式控制策略相比,基于动态规划的控制策略能够在蓄电池和APU之间合理地分配功率,可以有效提高增程式电动汽车的燃油经济性。