期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于VMD的Volterra模型奇异值熵的转子故障诊断方法 被引量:9
1
作者 杨恭勇 丁潇男 +2 位作者 王珺琦 魏迎东 周小龙 《制造技术与机床》 北大核心 2022年第3期150-156,共7页
针对转子故障信号的非平稳性以及敏感故障特征无法有效提取的问题,将变分模态分解(variational mode decomposition,VMD)的Volterra模型和奇异值熵相结合,提出一种故障诊断方法。对影响VMD分解准确性的参数选取方法进行了深入研究,给出... 针对转子故障信号的非平稳性以及敏感故障特征无法有效提取的问题,将变分模态分解(variational mode decomposition,VMD)的Volterra模型和奇异值熵相结合,提出一种故障诊断方法。对影响VMD分解准确性的参数选取方法进行了深入研究,给出了相关问题的解决策略。首先,对不同工况下转子实测信号进行VMD分解,利用能量熵增量选取对故障特征敏感的固有模态函数(intrinsic mode function,IMF)进行相空间重构,以建立Volterra自适应预测模型,将模型参数作为初始特征向量矩阵。然后,对初始特征向量进行奇异值分解以获取奇异值熵和奇异值特征向量矩阵,用于描述转子的故障特征。最后,采用模糊C均值(fuzzy c-means,FCM)算法对转子工作状态和故障类型进行识别。试验结果表明,所提方法可有效实现转子故障的特征提取及类型识别。通过同经集合经验模态分解(ensemble empirical mode decomposition,EEMD)相比,证明了该方法具有更有效的故障特征提取性能,是一种可行的方法。 展开更多
关键词 转子 故障诊断 变分模态分解 Volterra模型 奇异值熵
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部