期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于BiFPN优化的YOLOv8架构在皮革缺陷识别中的应用
1
作者 唐灏 陈法明 +1 位作者 冯志鹏 何凌志 《皮革科学与工程》 北大核心 2025年第5期22-30,60,共10页
传统的图像处理方法难以有效应对复杂背景和不同尺度的缺陷,文章提出了一种融合双向特征金字塔网络(BiFPN)的YOLOv8架构优化策略,旨在提升皮革缺陷识别的精度和效率。YOLOv8作为一种高效的目标检测框架,结合BiFPN的多尺度特征融合优势,... 传统的图像处理方法难以有效应对复杂背景和不同尺度的缺陷,文章提出了一种融合双向特征金字塔网络(BiFPN)的YOLOv8架构优化策略,旨在提升皮革缺陷识别的精度和效率。YOLOv8作为一种高效的目标检测框架,结合BiFPN的多尺度特征融合优势,增强了模型在复杂背景下的特征提取能力。通过在YOLOv8中引入BiFPN模块,模型能够更好地捕捉不同尺度的皮革缺陷,并通过优化后的损失函数进一步提高识别的准确性和稳定性。实验结果表明,改进前的YOLOv8权重为6.3 MB,改进后降至4.3 MB,且mAP50提高了0.2%。该优化策略相较于传统方法和未融合BiFPN的YOLOv8,提升了识别精度和识别速度,优化了YOLOv8框架在皮革缺陷检测中的有效性及实际应用潜力。 展开更多
关键词 BiFPN YOLOv8 皮革 缺陷识别 目标检测 多尺度特征融合 深度学习 优化策略
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部