期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于融合GhostNetV2的YOLO v7水稻籽粒检测
被引量:
8
1
作者
刘庆华
杨欣仪
+2 位作者
接浩
孙世诚
梁振伟
《农业机械学报》
EI
CAS
CSCD
北大核心
2023年第12期253-260,299,共9页
水稻籽粒检测在粮食储存中凸显重要作用,直接影响粮食销售的价格。针对一般机器视觉检测算法在水稻籽粒小目标的密集场景下存在难以识别且网络模型参数大,检测速度较慢、成本高等问题,提出一种基于YOLO v7优化的水稻籽粒检测算法。首先...
水稻籽粒检测在粮食储存中凸显重要作用,直接影响粮食销售的价格。针对一般机器视觉检测算法在水稻籽粒小目标的密集场景下存在难以识别且网络模型参数大,检测速度较慢、成本高等问题,提出一种基于YOLO v7优化的水稻籽粒检测算法。首先将部分高效聚合网络模块(Efficient layer aggregation network,ELAN)替换成轻量级网络模块GhostNetV2添加到主干及颈部网络部分,实现网络参数精简化的同时也减少了通道中的特征冗余;其次将卷积和自注意力结合的注意力模块(Convolution and self-attention mixed model,ACmix)添加到MP模块中,平衡全局和局部的特征信息,充分关注特征映射的细节信息;最后使用WIoU(Wise intersection over union)作为损失函数,减少了距离、纵横比之类的惩罚项干扰,单调聚焦机制的设计提高了模型的定位性能。在水稻籽粒图像数据集上验证改进后的模型检测水平,实验结果表明,改进后的YOLO v7模型的mAP@0.5达96.55%,mAP@0.5:0.95达70.10%,训练模型参数量也有所下降,在实际场景以暗黑色为背景的水稻杂质检测中的效果优于其他模型,满足了水稻籽粒的实时检测要求,可将此算法应用于自动化检测粮食系统中。
展开更多
关键词
水稻籽粒检测
YOLO
v7
轻量级网络
注意力模块
在线阅读
下载PDF
职称材料
题名
基于融合GhostNetV2的YOLO v7水稻籽粒检测
被引量:
8
1
作者
刘庆华
杨欣仪
接浩
孙世诚
梁振伟
机构
江苏
科技
大学
自动化学院
苏州科技
大学
电子与信息工程学院
江苏大学农业农村部智能农机装备重点实验室
出处
《农业机械学报》
EI
CAS
CSCD
北大核心
2023年第12期253-260,299,共9页
基金
国家自然科学基金项目(52275251)。
文摘
水稻籽粒检测在粮食储存中凸显重要作用,直接影响粮食销售的价格。针对一般机器视觉检测算法在水稻籽粒小目标的密集场景下存在难以识别且网络模型参数大,检测速度较慢、成本高等问题,提出一种基于YOLO v7优化的水稻籽粒检测算法。首先将部分高效聚合网络模块(Efficient layer aggregation network,ELAN)替换成轻量级网络模块GhostNetV2添加到主干及颈部网络部分,实现网络参数精简化的同时也减少了通道中的特征冗余;其次将卷积和自注意力结合的注意力模块(Convolution and self-attention mixed model,ACmix)添加到MP模块中,平衡全局和局部的特征信息,充分关注特征映射的细节信息;最后使用WIoU(Wise intersection over union)作为损失函数,减少了距离、纵横比之类的惩罚项干扰,单调聚焦机制的设计提高了模型的定位性能。在水稻籽粒图像数据集上验证改进后的模型检测水平,实验结果表明,改进后的YOLO v7模型的mAP@0.5达96.55%,mAP@0.5:0.95达70.10%,训练模型参数量也有所下降,在实际场景以暗黑色为背景的水稻杂质检测中的效果优于其他模型,满足了水稻籽粒的实时检测要求,可将此算法应用于自动化检测粮食系统中。
关键词
水稻籽粒检测
YOLO
v7
轻量级网络
注意力模块
Keywords
rice grain detection
YOLO v7
lightweight network
attention module
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于融合GhostNetV2的YOLO v7水稻籽粒检测
刘庆华
杨欣仪
接浩
孙世诚
梁振伟
《农业机械学报》
EI
CAS
CSCD
北大核心
2023
8
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部