期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
一种动态调整惯性权重的简化均值粒子群优化算法 被引量:28
1
作者 黄洋 鲁海燕 +1 位作者 许凯波 沈莞蔷 《小型微型计算机系统》 CSCD 北大核心 2018年第12期2590-2595,共6页
提出了一种动态调整惯性权重的简化均值粒子群优化算法(DSMPSO).该算法在简化粒子群优化算法的基础上,利用个体最优位置和全局最优位置的线性组合取代算法个体最优位置和全局最优位置,以加快算法的收敛速度以及寻优精度;此外,构造了一... 提出了一种动态调整惯性权重的简化均值粒子群优化算法(DSMPSO).该算法在简化粒子群优化算法的基础上,利用个体最优位置和全局最优位置的线性组合取代算法个体最优位置和全局最优位置,以加快算法的收敛速度以及寻优精度;此外,构造了一种基于余弦函数的惯性权重,并加入服从贝塔分布的随机调整策略,以实现对惯性权重的动态调整,从而更好地平衡算法的全局和局部搜索能力,并增加种群的多样性.仿真实验结果表明,与其他一些改进算法相比,本文的新算法具有更快的收敛速度和更高的寻优精度. 展开更多
关键词 粒子群优化 均值 余弦函数 贝塔分布 线性组合
在线阅读 下载PDF
自适应动态学习鸡群优化算法 被引量:8
2
作者 顾艳春 鲁海燕 +1 位作者 向蕾 沈莞蔷 《计算机工程与应用》 CSCD 北大核心 2020年第20期36-45,共10页
针对标准鸡群优化算法存在求解精度偏低、局部搜索能力弱等问题,提出了一种自适应动态学习鸡群优化算法ADLCSO(Adaptive Dynamic Learning Chicken Swarm Optimization algorithm)。该算法利用反向觅食机制自适应更新每只公鸡的位置,并... 针对标准鸡群优化算法存在求解精度偏低、局部搜索能力弱等问题,提出了一种自适应动态学习鸡群优化算法ADLCSO(Adaptive Dynamic Learning Chicken Swarm Optimization algorithm)。该算法利用反向觅食机制自适应更新每只公鸡的位置,并添加了非线性递减学习因子来动态调整公鸡位置的更新步长,以增强种群跳出局部极值的能力,从而提高算法的收敛速度和求解精度。此外,提出了一种基于个体间适应度值之差的种群相似度指标,并利用该指标对每只母鸡的位置进行自适应调整,以抑制种群多样性的衰减,从而进一步提高算法的求解精度。通过对12个经典测试函数进行仿真实验,结果表明ADLCSO算法在收敛速度、求解精度、稳定性及对高维问题的求解能力上均优于其他对比算法。 展开更多
关键词 鸡群算法 反向觅食机制 非线性递减学习因子 种群相似度指标
在线阅读 下载PDF
拉丁超立方抽样的自适应高斯小孔成像蝴蝶优化算法 被引量:11
3
作者 徐杰 鲁海燕 +2 位作者 赵金金 侯新宇 卢梦蝶 《计算机应用研究》 CSCD 北大核心 2022年第9期2701-2708,2751,共9页
针对蝴蝶优化算法存在种群多样性差、寻优精度低、收敛速度慢的不足,提出了拉丁超立方抽样的自适应高斯小孔成像蝴蝶优化算法。首先利用拉丁超立方抽样种群初始化策略以提高种群的多样性,从而增强算法的全局搜索能力;然后引入在不同进... 针对蝴蝶优化算法存在种群多样性差、寻优精度低、收敛速度慢的不足,提出了拉丁超立方抽样的自适应高斯小孔成像蝴蝶优化算法。首先利用拉丁超立方抽样种群初始化策略以提高种群的多样性,从而增强算法的全局搜索能力;然后引入在不同进化时期自动调节搜索范围的自适应最优引导策略,平衡算法的全局和局部搜索能力,从而提升算法的寻优精度;最后采用高斯小孔成像策略,对最优个体进行扰动,使得种群个体向最优个体靠近,以进一步提升算法的寻优精度并加快算法的收敛速度。通过对14个基准测试函数进行仿真实验以及Wilcoxon秩和检验,结果表明改进算法的寻优精度、收敛速度、稳定性和可扩展性等性能均得到了较大提高。 展开更多
关键词 蝴蝶优化算法 拉丁超立方抽样 自适应惯性权重 高斯小孔成像 高维优化
在线阅读 下载PDF
基于蛋白质互作网络挖掘结直肠癌致病基因 被引量:4
4
作者 吴慧慧 唐旭清 《数据采集与处理》 CSCD 北大核心 2018年第4期654-661,共8页
结直肠癌是消化系统常见的恶性肿瘤之一,死亡率居发达国家恶性肿瘤死亡率的第3位。本文通过生物分析进行结直肠癌致病基因的识别。首先,基于GEO中GSE9348基因表达数据集,利用R语言的LIMMA包筛选出P<0.05,Fold change>2的结直肠癌... 结直肠癌是消化系统常见的恶性肿瘤之一,死亡率居发达国家恶性肿瘤死亡率的第3位。本文通过生物分析进行结直肠癌致病基因的识别。首先,基于GEO中GSE9348基因表达数据集,利用R语言的LIMMA包筛选出P<0.05,Fold change>2的结直肠癌差异基因339个;其次,基于OMIM数据库中已知结直肠癌的致病基因和STRING数据库,获得差异表达基因与致病基因的蛋白质互作网络;接着利用Cytoscape软件的ClusterONE插件进行蛋白质互作网络模块分析,获得一个含有53个基因的子网络;最后,通过对子网络的拓扑分析,获得了FOS、CCND1、CEBPB、EGR1和NOS3等5个新结直肠癌致病基因。同时,通过功能富集分析和文献挖掘对新发现的致病基因进行验证。 展开更多
关键词 结直肠癌 蛋白互作网络 聚类分析 网络拓扑分析 功能富集分析
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部