期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于尺度感知与空间选择层级交互的遥感影像变化检测
1
作者 邵攀 管宗胜 +3 位作者 符潍奇 曾凡宇 程泽敏 石卫超 《航天返回与遥感》 CSCD 北大核心 2024年第5期89-100,共12页
目前,深度学习遥感影像变化检测方法在处理尺度变化显著影像时效果仍不够理想,且多数方法在解码阶段缺乏不同层级特征之间的有效交互。针对上述问题,文章以经典U-net网络为基础,提出一种基于尺度感知与空间选择层级交互的高分辨率遥感... 目前,深度学习遥感影像变化检测方法在处理尺度变化显著影像时效果仍不够理想,且多数方法在解码阶段缺乏不同层级特征之间的有效交互。针对上述问题,文章以经典U-net网络为基础,提出一种基于尺度感知与空间选择层级交互的高分辨率遥感影像变化检测方法。首先,通过分块并行不同大小的深度可分离卷积提取特征后引入通道注意力,设计一种尺度感知模块,以便有效提取不同形状尺度的变化对象;然后利用空间注意力交叉增强浅层特征与深层特征,提出一种空间选择层级交互模块,细化特征的表征能力;最后,基于两期遥感影像的差异图给出一种差异多尺度注意力模块,来突出变化信息,并抑制未变化信息。文章所提出的方法在WHU、Google、LEVIR和GVLM四个公开数据集上的精确率和召回率的调和平均数(F_(1)值)分别达到91.72%、85.17%、90.82%和88.03%,相比于现有的FC-EF、FC-Conc、IFN、SNUNet、BIT和MSCANet等6种对比变化检测网络,F_(1)值得到显著提升。 展开更多
关键词 深度学习 遥感影像变化检测 尺度感知 空间选择层级交互 U-net网络
在线阅读 下载PDF
基于ERNIE-Bi-GRU-Attention的医疗实体关系抽取模型
2
作者 姚洁仪 王春亮 《信息技术与信息化》 2024年第2期208-212,共5页
医疗信息文本信息处理存在文本长、专业术语多、实体间关系复杂等问题,因此,提出一种基于ERNIEBi-GRU-Attention的医疗实体关系抽取模型。首先通过预训练模型ERNIE使向量获得丰富的语义信息和医疗先验知识,解决医疗专业术语问题;其次通... 医疗信息文本信息处理存在文本长、专业术语多、实体间关系复杂等问题,因此,提出一种基于ERNIEBi-GRU-Attention的医疗实体关系抽取模型。首先通过预训练模型ERNIE使向量获得丰富的语义信息和医疗先验知识,解决医疗专业术语问题;其次通过Bi-GRU-Attention进行语句编码,捕获有效上下文信息,有利于关系抽取;然后使用经典CRF输出实体标签;将实体标签特征和语句编码向量特征拼接进行一阶和二阶特征融合;最后通过分类器获得最终关系标签输出。通过在医疗数据集上验证,结果表明与其他模型相比,使用此模型医疗实体关系抽取的效果有所提升。 展开更多
关键词 信息抽取 关系抽取 预训练 BiGRU 医疗文本
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部