期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
内存高效的持久性分布式文件系统客户端缓存DFS-Cache 被引量:3
1
作者 倪瑞轩 蔡淼 叶保留 《计算机应用》 CSCD 北大核心 2024年第4期1172-1179,共8页
为了在数据密集型工作流下有效降低缓存碎片整理开销并提高缓存命中率,提出一种持久性分布式文件系统客户端缓存DFS-Cache(Distributed File System Cache)。DFS-Cache基于非易失性内存(NVM)设计实现,能够保证数据的持久性和崩溃一致性... 为了在数据密集型工作流下有效降低缓存碎片整理开销并提高缓存命中率,提出一种持久性分布式文件系统客户端缓存DFS-Cache(Distributed File System Cache)。DFS-Cache基于非易失性内存(NVM)设计实现,能够保证数据的持久性和崩溃一致性,并大幅减少冷启动时间。DFS-Cache包括基于虚拟内存重映射的缓存碎片整理机制和基于生存时间(TTL)的缓存空间管理策略。前者基于NVM可被内存控制器直接寻址的特性,动态修改虚拟地址和物理地址之间的映射关系,实现零拷贝的内存碎片整理;后者是一种冷热分离的分组管理策略,借助重映射的缓存碎片整理机制,提升缓存空间的管理效率。实验采用真实的Intel傲腾持久性内存设备,对比商用的分布式文件系统MooseFS和GlusterFS,采用Fio和Filebench等标准测试程序,DFS-Cache最高能提升5.73倍和1.89倍的系统吞吐量。 展开更多
关键词 非易失性内存 分布式文件系统 客户端缓存 缓存碎片整理 冷热数据分组 缓存设计
在线阅读 下载PDF
文档级实体关系抽取方法研究综述 被引量:10
2
作者 冯钧 魏大保 +2 位作者 苏栋 杭婷婷 陆佳民 《计算机科学》 CSCD 北大核心 2022年第10期224-242,共19页
实体关系抽取作为文本挖掘和信息抽取的核心任务,意图从自然语言文本中识别并判定实体对之间存在的特定关系,为智能检索、语义分析等提供了基础支持,有助于提高搜索效率,是自然语言处理领域中的研究热点。相比从单句中进行抽取,文档中... 实体关系抽取作为文本挖掘和信息抽取的核心任务,意图从自然语言文本中识别并判定实体对之间存在的特定关系,为智能检索、语义分析等提供了基础支持,有助于提高搜索效率,是自然语言处理领域中的研究热点。相比从单句中进行抽取,文档中包含了更加丰富的实体关系语义,因此近年来很多新的抽取方法纷纷将研究重点从句子层次转移到文档层次,并取得了丰富的研究成果。文中系统地总结了近年来文档级实体关系抽取的主流方法和研究进展。首先概述了文档级关系抽取问题及面临的挑战,然后从基于序列、基于图和基于预训练语言模型3个方面介绍多种文档级关系抽取方法,最后对各种方法使用的数据集及实验进行对比分析,并对未来可能的研究方向进行了探讨和展望。 展开更多
关键词 关系抽取 文档级关系抽取 深度学习 图神经网络 预训练语言模型
在线阅读 下载PDF
基于动态簇粒子群优化的无人机集群路径规划方法 被引量:6
3
作者 王龙宝 栾茵琪 +3 位作者 徐亮 曾昕 张帅 徐淑芳 《计算机应用》 CSCD 北大核心 2023年第12期3816-3823,共8页
路径规划对于无人机(UAV)集群的任务执行十分重要,而且高维场景中的计算通常很复杂。群体智能为解决该问题提供了较好的解决思路。粒子群优化(PSO)算法具有参数少、收敛速度快、操作简单等优点,尤其适用于路径规划问题,但它在应用时存... 路径规划对于无人机(UAV)集群的任务执行十分重要,而且高维场景中的计算通常很复杂。群体智能为解决该问题提供了较好的解决思路。粒子群优化(PSO)算法具有参数少、收敛速度快、操作简单等优点,尤其适用于路径规划问题,但它在应用时存在全局搜索能力差、容易陷入局部最优的问题。为了解决上述问题以提升无人机集群路径规划的效果,提出了动态簇粒子群优化(DCPSO)算法。首先,利用人工势场法和滚动时域控制原理建模UAV集群路径规划问题的任务场景;其次,引入Tent混沌映射和动态簇机制进一步提升全局搜索能力和搜索精度;最后,使用DCPSO算法优化模型的目标函数,以获得UAV集群的每个轨迹点的选择。在单峰/多峰、低维/高维不同组合的10种基准测试函数下的仿真实验结果表明,与PSO、鸽子启发优化(PIO)、麻雀搜索算法(SSA)和混沌扰动鸽群优化(CDPIO)算法相比,DCPSO算法具有更好的计算最优值、均值和方差,搜索精度更佳,稳定性更强。此外,UAV集群路径规划应用实例仿真结果也验证了DCPSO算法的性能与效果。 展开更多
关键词 粒子群优化 动态簇机制 无人机集群 路径规划 滚动时域控制
在线阅读 下载PDF
移动边缘计算下基于联邦学习的动态QoS优化 被引量:9
4
作者 张鹏程 魏芯淼 金惠颖 《计算机学报》 EI CAS CSCD 北大核心 2021年第12期2431-2446,共16页
在5G边缘网络飞速发展的过程中,边缘用户对高带宽、低时延的网络服务的质量要求也显著提高.从移动边缘网络的角度来看,网络内的整体服务质量与边缘用户的分配息息相关,用户移动的复杂性为边缘用户分配带来困难,边缘用户分配过程中还存... 在5G边缘网络飞速发展的过程中,边缘用户对高带宽、低时延的网络服务的质量要求也显著提高.从移动边缘网络的角度来看,网络内的整体服务质量与边缘用户的分配息息相关,用户移动的复杂性为边缘用户分配带来困难,边缘用户分配过程中还存在隐私泄露问题.本文提出一种移动边缘环境下基于联邦学习的动态QoS(Quality of Service)优化方法MECFLD_QoS,基于联邦学习的思想,优化边缘区域的服务缓存,在动态移动场景下根据用户位置分配边缘服务器,有效保护用户隐私,实现区域服务质量优化,对动态用户移动场景有更好的适应性.MECFLD_QoS主要做了以下几个方面的优化工作:(1)优化了传统QoS数据集,将数据集映射到边缘网络环境中,充分考虑边缘计算的移动、分布式、实时性、复杂场景等特点,形成边缘QoS特征数据集;(2)优化了边缘服务器缓存,在用户终端训练用户偏好模型,与区域公有模型交互时只传输参数,将用户的隐私数据封装在用户终端中,避免数据的传输,可以有效地保护用户特征隐私;(3)优化了用户移动场景,在动态移动场景中收集用户移动信息,利用用户接入基站的地理位置拟合用户的移动轨迹进行预测,有效地模糊了用户的真实位置,在轨迹预测的同时有效地保护了用户的位置隐私;(4)优化了用户分配方法,提出改进的基于二维解的人工蜂群算法对边缘网络中的用户分配问题进行优化,事实证明改进的人工蜂群算法针对其多变量多峰值的特点有效地优化了用户分配,达到了较优的分配效果.通过边缘QoS特征数据集实验表明,本方法在多变量多峰值的用户分配问题中能产生全局最优的分配. 展开更多
关键词 移动边缘 联邦学习 移动感知 边缘用户分配 服务质量
在线阅读 下载PDF
1998—2020年三峡库区最大1h降水的时空变化特征 被引量:12
5
作者 王雨潇 孙营营 +3 位作者 张天宇 刘波 王文鹏 蒋佳怡 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第1期10-18,共9页
以年、月最大1 h降水强度及其发生时间为指标,采用趋势检验、周期分析、经验正交函数和降水过程综合强度评估方法,分析了1998—2020年三峡库区最大1 h降水的时空变化特征。结果表明:库区年最大1 h降水发生时间有每隔约10 a前移至汛前的... 以年、月最大1 h降水强度及其发生时间为指标,采用趋势检验、周期分析、经验正交函数和降水过程综合强度评估方法,分析了1998—2020年三峡库区最大1 h降水的时空变化特征。结果表明:库区年最大1 h降水发生时间有每隔约10 a前移至汛前的现象,主汛期7月最大1 h降水强度有8 a的循环周期;与2010年以前比,2010年后的库区强降水落区表现出自上游向坝址迁移的走势;若最大1 h降水强度相近,则降水持续时间长、覆盖范围广的降水过程,综合强度更高,对防洪安全影响更大。 展开更多
关键词 三峡库区 最大1 h降水量 降水过程综合强度 EOF分析 时空变化
在线阅读 下载PDF
基于图注意力网络与双阶注意力机制的径流预报模型 被引量:9
6
作者 胡鹤轩 隋华超 +3 位作者 胡强 张晔 胡震云 马能武 《计算机应用》 CSCD 北大核心 2022年第5期1607-1615,共9页
为了提高流域径流量预报的准确率,考虑数据驱动水文模型缺乏模型透明度与物理可解释性的问题,提出了一种使用图注意力网络与基于长短期记忆网络(LSTM)的双阶注意力机制(GAT-DALSTM)模型来进行径流预报。首先,以流域站点的水文资料为基础... 为了提高流域径流量预报的准确率,考虑数据驱动水文模型缺乏模型透明度与物理可解释性的问题,提出了一种使用图注意力网络与基于长短期记忆网络(LSTM)的双阶注意力机制(GAT-DALSTM)模型来进行径流预报。首先,以流域站点的水文资料为基础,引入图神经网络提取流域站点的拓扑结构并生成特征向量;其次,针对水文时间序列数据的特点,建立了基于双阶注意力机制的径流预报模型对流域径流量进行预测,并通过基于注意力系数热点图的模型评估方法验证所提模型的可靠性与透明度。在屯溪流域数据集上,将所提模型与图卷积神经网络(GCN)和长短期记忆网络(LSTM)在各个预测步长下进行比较,实验结果表明,所提模型的纳什效率系数分别平均提高了3.7%和4.9%,验证了GAT-DALSTM径流预报模型的准确性。从水文与应用角度对注意力系数热点图进行分析,验证了模型的可靠性与实用性。所提模型能为提高流域径流量的预测精度与模型透明度提供技术支撑。 展开更多
关键词 图神经网络 注意力机制 编码器-解码器 长短期记忆网络 时间序列预测 水文预报
在线阅读 下载PDF
针对黑盒智能语音软件的对抗样本生成方法 被引量:4
7
作者 袁天昊 吉顺慧 +4 位作者 张鹏程 蔡涵博 戴启印 叶仕俊 任彬 《软件学报》 EI CSCD 北大核心 2022年第5期1569-1586,共18页
随着深度学习技术的成熟,智能语音识别软件获得了广泛的应用,存在于智能软件内部的各种深度神经网络发挥了关键性的作用.然而,最近的研究表明:含有微小扰动的对抗样本会对深度神经网络的安全性和鲁棒性构成极大威胁.研究人员通常将生成... 随着深度学习技术的成熟,智能语音识别软件获得了广泛的应用,存在于智能软件内部的各种深度神经网络发挥了关键性的作用.然而,最近的研究表明:含有微小扰动的对抗样本会对深度神经网络的安全性和鲁棒性构成极大威胁.研究人员通常将生成的对抗样本作为测试用例输入到智能语音识别软件中,观察对抗样本是否会让软件产生错误判断,从而采取防御方法来提高智能软件安全性和鲁棒性.在对抗样本的生成中,黑盒智能语音软件在生活中较为常见,具有实际的研究价值,而现有的生成方法却存在一定的局限性.为此,针对黑盒智能语音软件,提出了一种基于萤火虫算法和梯度评估方法的目标对抗样本生成方法,即萤火虫-梯度对抗样本生成方法.针对设定的目标文本,在原始的音频样本中不断加入干扰,根据当前对抗样本的文本内容与目标文本之间的编辑距离,选择使用萤火虫算法或梯度评估方法来优化对抗样本,最终生成目标对抗样本.为了验证方法的效果,在常用的语音识别软件上,使用公共语音数据集、谷歌命令数据集和LibriSpeech数据集这3种不同类型的语音数据集进行了实验评估,并寻找志愿者进行对抗样本的质量评估.实验表明,提出的方法能有效提高目标对抗样本生成的成功率,例如针对DeepSpeech语音识别软件,在公共语音数据集上生成对抗样本的成功率相比对比方法提升了13%. 展开更多
关键词 智能软件 语音识别 对抗样本 萤火虫算法 梯度评估方法
在线阅读 下载PDF
基于双重注意力机制的事件抽取方法 被引量:4
8
作者 朱敏 毛莺池 +2 位作者 程永 陈程军 王龙宝 《软件学报》 EI CSCD 北大核心 2023年第7期3226-3240,共15页
针对事件抽取存在未充分利用句法关系、论元角色缺失的情况,提出了基于双重注意力机制的事件抽取(event extraction based on dual attention mechanism,EEDAM)方法,有助于提高事件抽取的精确率和召回率.首先,基于4种嵌入向量进行句子编... 针对事件抽取存在未充分利用句法关系、论元角色缺失的情况,提出了基于双重注意力机制的事件抽取(event extraction based on dual attention mechanism,EEDAM)方法,有助于提高事件抽取的精确率和召回率.首先,基于4种嵌入向量进行句子编码,引入依赖关系,构建依赖关系图,使深度神经网络可以充分利用句法关系.然后,通过图转换注意网络生成新的依赖弧和聚合节点信息,捕获长程依赖关系和潜在交互,加权融合注意力网络,捕捉句中关键的语义信息,抽取句子级事件论元,提升模型预测能力.最后,利用关键句检测和相似性排序,进行文档级论元填充.实验结果表明,采用基于双重注意力机制的事件抽取方法,在ACE2005数据集上,较最佳基线联合多中文事件抽取器(joint multiple Chinese event extractor,JMCEE)在精确率、召回率和F1-score分别提高17.82%、4.61%、9.80%;在大坝安全运行日志数据集上,较最佳基线JMCEE在精确率、召回率和F1-score上分别提高18.08%、4.41%、9.93%. 展开更多
关键词 事件抽取 双重注意力 依赖关系 论元填充 神经网络
在线阅读 下载PDF
基于图注意力网络的全局图像描述生成方法 被引量:3
9
作者 隋佳宏 毛莺池 +2 位作者 于慧敏 王子成 平萍 《计算机应用》 CSCD 北大核心 2023年第5期1409-1415,共7页
现有图像描述生成方法仅考虑网格的空间位置特征,网格特征交互不足,并且未充分利用图像的全局特征。为生成更高质量的图像描述,提出一种基于图注意力网络(GAT)的全局图像描述生成方法。首先,利用多层卷积神经网络(CNN)进行视觉编码,提... 现有图像描述生成方法仅考虑网格的空间位置特征,网格特征交互不足,并且未充分利用图像的全局特征。为生成更高质量的图像描述,提出一种基于图注意力网络(GAT)的全局图像描述生成方法。首先,利用多层卷积神经网络(CNN)进行视觉编码,提取给定图像的网格特征和整幅图像特征,并构建网格特征交互图;然后,通过GAT将特征提取问题转化成节点分类问题,包括一个全局节点和多个局部节点,更新优化后可以充分利用全局和局部特征;最后,基于Transformer的解码模块利用改进的视觉特征生成图像描述。在Microsoft COCO数据集上的实验结果表明,所提方法能有效捕捉图像的全局和局部特征,在CIDEr(Consensus-based Image Description Evaluation)指标上达到了133.1%。可见基于GAT的全局图像描述生成方法能有效提高文字描述图像的准确度,从而可以使用文字对图像进行分类、检索、分析等处理。 展开更多
关键词 网格特征 图注意力网络 卷积神经网络 图像描述生成 全局特征
在线阅读 下载PDF
基于稀疏扰动的对抗样本生成方法
10
作者 吉顺慧 胡黎明 +1 位作者 张鹏程 戚荣志 《软件学报》 EI CSCD 北大核心 2023年第9期4003-4017,共15页
近年来,深度神经网络(deep neural network, DNN)在图像领域取得了巨大的进展.然而研究表明, DNN容易受到对抗样本的干扰,表现出较差的鲁棒性.通过生成对抗样本攻击DNN,可以对DNN的鲁棒性进行评估,进而采取相应的防御方法提高DNN的鲁棒... 近年来,深度神经网络(deep neural network, DNN)在图像领域取得了巨大的进展.然而研究表明, DNN容易受到对抗样本的干扰,表现出较差的鲁棒性.通过生成对抗样本攻击DNN,可以对DNN的鲁棒性进行评估,进而采取相应的防御方法提高DNN的鲁棒性.现有对抗样本生成方法依旧存在生成扰动稀疏性不足、扰动幅度过大等缺陷.提出一种基于稀疏扰动的对抗样本生成方法——SparseAG (sparse perturbation based adversarial example generation),该方法针对图像样本能够生成较为稀疏并且幅度较小的扰动.具体来讲, SparseAG方法首先基于损失函数关于输入图像的梯度值迭代地选择扰动点来生成初始对抗样本,每一次迭代按照梯度值由大到小的顺序确定新增扰动点的候选集,选择使损失函数值最小的扰动添加到图像中.其次,针对初始扰动方案,通过一种扰动优化策略来提高对抗样本的稀疏性和真实性,基于每个扰动的重要性来改进扰动以跳出局部最优,并进一步减少冗余扰动以及冗余扰动幅度.选取CIFAR-10数据集以及ImageNet数据集,在目标攻击以及非目标攻击两种场景下对该方法进行评估.实验结果表明, SparseAG方法在不同的数据集以及不同的攻击场景下均能够达到100%的攻击成功率,且生成扰动的稀疏性和整体扰动幅度都优于对比方法. 展开更多
关键词 深度神经网络 对抗样本生成 稀疏扰动 图像识别 目标攻击 非目标攻击
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部