为了在数据密集型工作流下有效降低缓存碎片整理开销并提高缓存命中率,提出一种持久性分布式文件系统客户端缓存DFS-Cache(Distributed File System Cache)。DFS-Cache基于非易失性内存(NVM)设计实现,能够保证数据的持久性和崩溃一致性...为了在数据密集型工作流下有效降低缓存碎片整理开销并提高缓存命中率,提出一种持久性分布式文件系统客户端缓存DFS-Cache(Distributed File System Cache)。DFS-Cache基于非易失性内存(NVM)设计实现,能够保证数据的持久性和崩溃一致性,并大幅减少冷启动时间。DFS-Cache包括基于虚拟内存重映射的缓存碎片整理机制和基于生存时间(TTL)的缓存空间管理策略。前者基于NVM可被内存控制器直接寻址的特性,动态修改虚拟地址和物理地址之间的映射关系,实现零拷贝的内存碎片整理;后者是一种冷热分离的分组管理策略,借助重映射的缓存碎片整理机制,提升缓存空间的管理效率。实验采用真实的Intel傲腾持久性内存设备,对比商用的分布式文件系统MooseFS和GlusterFS,采用Fio和Filebench等标准测试程序,DFS-Cache最高能提升5.73倍和1.89倍的系统吞吐量。展开更多
在5G边缘网络飞速发展的过程中,边缘用户对高带宽、低时延的网络服务的质量要求也显著提高.从移动边缘网络的角度来看,网络内的整体服务质量与边缘用户的分配息息相关,用户移动的复杂性为边缘用户分配带来困难,边缘用户分配过程中还存...在5G边缘网络飞速发展的过程中,边缘用户对高带宽、低时延的网络服务的质量要求也显著提高.从移动边缘网络的角度来看,网络内的整体服务质量与边缘用户的分配息息相关,用户移动的复杂性为边缘用户分配带来困难,边缘用户分配过程中还存在隐私泄露问题.本文提出一种移动边缘环境下基于联邦学习的动态QoS(Quality of Service)优化方法MECFLD_QoS,基于联邦学习的思想,优化边缘区域的服务缓存,在动态移动场景下根据用户位置分配边缘服务器,有效保护用户隐私,实现区域服务质量优化,对动态用户移动场景有更好的适应性.MECFLD_QoS主要做了以下几个方面的优化工作:(1)优化了传统QoS数据集,将数据集映射到边缘网络环境中,充分考虑边缘计算的移动、分布式、实时性、复杂场景等特点,形成边缘QoS特征数据集;(2)优化了边缘服务器缓存,在用户终端训练用户偏好模型,与区域公有模型交互时只传输参数,将用户的隐私数据封装在用户终端中,避免数据的传输,可以有效地保护用户特征隐私;(3)优化了用户移动场景,在动态移动场景中收集用户移动信息,利用用户接入基站的地理位置拟合用户的移动轨迹进行预测,有效地模糊了用户的真实位置,在轨迹预测的同时有效地保护了用户的位置隐私;(4)优化了用户分配方法,提出改进的基于二维解的人工蜂群算法对边缘网络中的用户分配问题进行优化,事实证明改进的人工蜂群算法针对其多变量多峰值的特点有效地优化了用户分配,达到了较优的分配效果.通过边缘QoS特征数据集实验表明,本方法在多变量多峰值的用户分配问题中能产生全局最优的分配.展开更多
针对事件抽取存在未充分利用句法关系、论元角色缺失的情况,提出了基于双重注意力机制的事件抽取(event extraction based on dual attention mechanism,EEDAM)方法,有助于提高事件抽取的精确率和召回率.首先,基于4种嵌入向量进行句子编...针对事件抽取存在未充分利用句法关系、论元角色缺失的情况,提出了基于双重注意力机制的事件抽取(event extraction based on dual attention mechanism,EEDAM)方法,有助于提高事件抽取的精确率和召回率.首先,基于4种嵌入向量进行句子编码,引入依赖关系,构建依赖关系图,使深度神经网络可以充分利用句法关系.然后,通过图转换注意网络生成新的依赖弧和聚合节点信息,捕获长程依赖关系和潜在交互,加权融合注意力网络,捕捉句中关键的语义信息,抽取句子级事件论元,提升模型预测能力.最后,利用关键句检测和相似性排序,进行文档级论元填充.实验结果表明,采用基于双重注意力机制的事件抽取方法,在ACE2005数据集上,较最佳基线联合多中文事件抽取器(joint multiple Chinese event extractor,JMCEE)在精确率、召回率和F1-score分别提高17.82%、4.61%、9.80%;在大坝安全运行日志数据集上,较最佳基线JMCEE在精确率、召回率和F1-score上分别提高18.08%、4.41%、9.93%.展开更多
文摘为了在数据密集型工作流下有效降低缓存碎片整理开销并提高缓存命中率,提出一种持久性分布式文件系统客户端缓存DFS-Cache(Distributed File System Cache)。DFS-Cache基于非易失性内存(NVM)设计实现,能够保证数据的持久性和崩溃一致性,并大幅减少冷启动时间。DFS-Cache包括基于虚拟内存重映射的缓存碎片整理机制和基于生存时间(TTL)的缓存空间管理策略。前者基于NVM可被内存控制器直接寻址的特性,动态修改虚拟地址和物理地址之间的映射关系,实现零拷贝的内存碎片整理;后者是一种冷热分离的分组管理策略,借助重映射的缓存碎片整理机制,提升缓存空间的管理效率。实验采用真实的Intel傲腾持久性内存设备,对比商用的分布式文件系统MooseFS和GlusterFS,采用Fio和Filebench等标准测试程序,DFS-Cache最高能提升5.73倍和1.89倍的系统吞吐量。
文摘在5G边缘网络飞速发展的过程中,边缘用户对高带宽、低时延的网络服务的质量要求也显著提高.从移动边缘网络的角度来看,网络内的整体服务质量与边缘用户的分配息息相关,用户移动的复杂性为边缘用户分配带来困难,边缘用户分配过程中还存在隐私泄露问题.本文提出一种移动边缘环境下基于联邦学习的动态QoS(Quality of Service)优化方法MECFLD_QoS,基于联邦学习的思想,优化边缘区域的服务缓存,在动态移动场景下根据用户位置分配边缘服务器,有效保护用户隐私,实现区域服务质量优化,对动态用户移动场景有更好的适应性.MECFLD_QoS主要做了以下几个方面的优化工作:(1)优化了传统QoS数据集,将数据集映射到边缘网络环境中,充分考虑边缘计算的移动、分布式、实时性、复杂场景等特点,形成边缘QoS特征数据集;(2)优化了边缘服务器缓存,在用户终端训练用户偏好模型,与区域公有模型交互时只传输参数,将用户的隐私数据封装在用户终端中,避免数据的传输,可以有效地保护用户特征隐私;(3)优化了用户移动场景,在动态移动场景中收集用户移动信息,利用用户接入基站的地理位置拟合用户的移动轨迹进行预测,有效地模糊了用户的真实位置,在轨迹预测的同时有效地保护了用户的位置隐私;(4)优化了用户分配方法,提出改进的基于二维解的人工蜂群算法对边缘网络中的用户分配问题进行优化,事实证明改进的人工蜂群算法针对其多变量多峰值的特点有效地优化了用户分配,达到了较优的分配效果.通过边缘QoS特征数据集实验表明,本方法在多变量多峰值的用户分配问题中能产生全局最优的分配.
文摘针对事件抽取存在未充分利用句法关系、论元角色缺失的情况,提出了基于双重注意力机制的事件抽取(event extraction based on dual attention mechanism,EEDAM)方法,有助于提高事件抽取的精确率和召回率.首先,基于4种嵌入向量进行句子编码,引入依赖关系,构建依赖关系图,使深度神经网络可以充分利用句法关系.然后,通过图转换注意网络生成新的依赖弧和聚合节点信息,捕获长程依赖关系和潜在交互,加权融合注意力网络,捕捉句中关键的语义信息,抽取句子级事件论元,提升模型预测能力.最后,利用关键句检测和相似性排序,进行文档级论元填充.实验结果表明,采用基于双重注意力机制的事件抽取方法,在ACE2005数据集上,较最佳基线联合多中文事件抽取器(joint multiple Chinese event extractor,JMCEE)在精确率、召回率和F1-score分别提高17.82%、4.61%、9.80%;在大坝安全运行日志数据集上,较最佳基线JMCEE在精确率、召回率和F1-score上分别提高18.08%、4.41%、9.93%.