期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
面向机器阅读理解的高质量藏语数据集构建 被引量:4
1
作者 孙媛 刘思思 +2 位作者 陈超凡 旦正错 赵小兵 《中文信息学报》 CSCD 北大核心 2024年第3期56-64,共9页
机器阅读理解是通过算法让机器根据给定的上下文回答问题,从而测试机器理解自然语言的程度。其中,数据集的构建是机器阅读理解的主要任务之一。目前,相关算法模型在大多数流行的英语数据集上都取得了显著的成绩,甚至超过了人类表现。但... 机器阅读理解是通过算法让机器根据给定的上下文回答问题,从而测试机器理解自然语言的程度。其中,数据集的构建是机器阅读理解的主要任务之一。目前,相关算法模型在大多数流行的英语数据集上都取得了显著的成绩,甚至超过了人类表现。但对于低资源语言,由于缺乏相应的数据集,机器阅读理解研究尚处于起步阶段。该文以藏语为例,人工构建了藏语机器阅读理解数据集(TibetanQA),其中包含20000个问题答案对和1513篇文章。该数据集的文章均来自云藏网,涵盖了自然、文化和教育等12个领域,问题形式多样且具有一定的难度。另外,该数据集在文章收集、问题构建、答案验证、回答多样性和推理能力等方面,均采用严格的流程以确保数据的质量,同时采用基于语言特征消融输入的验证方法说明了数据集的质量。最后,该文初步探索了三种经典的英语阅读理解模型在TibetanQA数据集上的表现,其结果难以媲美人类,这表明藏语机器阅读理解任务还需要更进一步的探索。 展开更多
关键词 机器阅读理解 低资源语言 藏语 数据集
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部