期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于YOLOv5n的轻量级织物疵点检测算法 被引量:5
1
作者 李洋 李敏 +2 位作者 黄政 董雄伟 朱立成 《毛纺科技》 CAS 北大核心 2024年第5期87-97,共11页
针对轻量级模型在检测织物疵点时精确率低的问题,在YOLOv5n的基础上提出一种上下文增强与混合感受野的织物疵点检测算法。首先,为主干网络设计了一种轻量扩张卷积空间金字塔模块,并将主干网络的下采样比增加至64,在增强上下文信息的同... 针对轻量级模型在检测织物疵点时精确率低的问题,在YOLOv5n的基础上提出一种上下文增强与混合感受野的织物疵点检测算法。首先,为主干网络设计了一种轻量扩张卷积空间金字塔模块,并将主干网络的下采样比增加至64,在增强上下文信息的同时提取更深层的语义信息,提高模型识别性能;其次,为颈部网络设计了一种混合感受野融合模块代替原C3模块并进行特征融合,提高极端长宽比目标的检测精度。实验表明:该算法在基于天池织物数据集上的IOU阈值为0.5时的平均精度均值mAP 50、精确率、召回率分别达到了93.1%、91.6%、89.1%,相较于原YOLOv5n算法分别提高了4.9%、7.3%、5.0%,且模型文件大小仅6.28 MB,更适用于织物疵点检测领域。 展开更多
关键词 疵点检测 深度学习 YOLOv5n 空间金字塔 感受野融合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部