CTB(cell to body)电池车身一体化技术在提升续航里程、整车刚度和耐撞性等方面具有很大优势,已成为新能源汽车行业发展新方向,但要将电池上盖与车身地板二合为一,密封是限制CTB技术发展的最大难题之一,目前行业在CTB密封领域的研究还...CTB(cell to body)电池车身一体化技术在提升续航里程、整车刚度和耐撞性等方面具有很大优势,已成为新能源汽车行业发展新方向,但要将电池上盖与车身地板二合为一,密封是限制CTB技术发展的最大难题之一,目前行业在CTB密封领域的研究还是空白。本文从CTB密封策略、密封结构设计、密封组件选型、失效后果分析和用户工况设计验证展开研究,首次提出攻克行业内CTB密封设计难题的解决方案,加速CTB技术普及应用,推动全球新能源汽车产业电动化转型。展开更多
In order to address the issue of sensor configuration redundancy in intelligent driving,this paper constructs a multi-objective optimization model that considers cost,coverage ability,and perception performance.And th...In order to address the issue of sensor configuration redundancy in intelligent driving,this paper constructs a multi-objective optimization model that considers cost,coverage ability,and perception performance.And then,combining a specific set of parameters,the NSGA-II algorithm is used to solve the multi-objective model established in this paper,and a Pareto front containing 24 typical configuration schemes is extracted after considering empirical constraints.Finally,using the decision preference method proposed in this paper that combines subjective and objective factors,decision scores are calculated and ranked for various configuration schemes from both cost and performance preferences.The research results indicate that the multi-objective optimization model established in this paper can screen and optimize various configuration schemes from the optimal principle of the vehicle,and the optimized configuration schemes can be quantitatively ranked to obtain the decision results for the vehicle under different preference tendencies.展开更多
文摘CTB(cell to body)电池车身一体化技术在提升续航里程、整车刚度和耐撞性等方面具有很大优势,已成为新能源汽车行业发展新方向,但要将电池上盖与车身地板二合为一,密封是限制CTB技术发展的最大难题之一,目前行业在CTB密封领域的研究还是空白。本文从CTB密封策略、密封结构设计、密封组件选型、失效后果分析和用户工况设计验证展开研究,首次提出攻克行业内CTB密封设计难题的解决方案,加速CTB技术普及应用,推动全球新能源汽车产业电动化转型。
文摘In order to address the issue of sensor configuration redundancy in intelligent driving,this paper constructs a multi-objective optimization model that considers cost,coverage ability,and perception performance.And then,combining a specific set of parameters,the NSGA-II algorithm is used to solve the multi-objective model established in this paper,and a Pareto front containing 24 typical configuration schemes is extracted after considering empirical constraints.Finally,using the decision preference method proposed in this paper that combines subjective and objective factors,decision scores are calculated and ranked for various configuration schemes from both cost and performance preferences.The research results indicate that the multi-objective optimization model established in this paper can screen and optimize various configuration schemes from the optimal principle of the vehicle,and the optimized configuration schemes can be quantitatively ranked to obtain the decision results for the vehicle under different preference tendencies.