期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
液压挖掘机作业循环状态智能识别方法 被引量:6
1
作者 黄杰 王东 +2 位作者 王新晴 殷勤 邵发明 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2019年第9期1663-1673,共11页
为实现液压挖掘机作业循环阶段状态的自动识别,提出采用时窗滑移特征提取与PCA-SVM相结合的方法.以液压挖掘机2个主泵压力信号为研究对象,采用时窗滑移截取各阶段状态的小段波形,提取所有截取波段相应的时频参数并进行特征值归一化,经PC... 为实现液压挖掘机作业循环阶段状态的自动识别,提出采用时窗滑移特征提取与PCA-SVM相结合的方法.以液压挖掘机2个主泵压力信号为研究对象,采用时窗滑移截取各阶段状态的小段波形,提取所有截取波段相应的时频参数并进行特征值归一化,经PCA降维处理后作为输入特征集,采用SVM进行状态分类,并分别讨论时窗宽度与重叠率对识别准确率的影响.引入即时校正策略,对直接识别结果进行自动检验校正,纠正不符合挖掘机循环作业逻辑规则的误判结果,从而使识别准确率由80.85%提高到89.36%.实验结果表明,所提方法能准确有效地实现液压挖掘机作业循环各阶段状态的自动识别. 展开更多
关键词 液压挖掘机 作业循环 状态识别 支持向量机(SVM) 即时校正策略
在线阅读 下载PDF
基于EEMD能量熵-LPP的高速列车转子系统故障特征提取方法 被引量:4
2
作者 张琛 方涛 闫开琦 《机车电传动》 北大核心 2021年第1期145-150,共6页
针对高速列车轴承转子系统微弱故障特征提取难的问题,提出了一种基于EEMD能量熵-LPP的高速列车转子系统故障特征提取方法。该方法结合EEMD、能量熵和LPP,首先对振动信号进行EEMD自适应分解,计算高频IMF分量的能量熵获得高维特征向量集... 针对高速列车轴承转子系统微弱故障特征提取难的问题,提出了一种基于EEMD能量熵-LPP的高速列车转子系统故障特征提取方法。该方法结合EEMD、能量熵和LPP,首先对振动信号进行EEMD自适应分解,计算高频IMF分量的能量熵获得高维特征向量集完成初步特征提取;然后通过LPP算法将高维特征向量集投影到低维空间对特征进一步提取形成低维样本集,在保留故障特征的局部几何结构信息的同时降低特征数据的复杂度,提高故障模式识别的分类性能;最后将低维样本集输入到KNN分类器中进行故障识别。通过比较初次提取特征和再次提取特征,结果表明该模型具有优越的聚类性能,可准确地识别几种常见的高速列车转子系统故障类型。 展开更多
关键词 高速列车 特征提取 EEMD 能量熵 LPP 故障诊断
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部