期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进DeeplabV3+的钢筋尺寸检测算法
被引量:
2
1
作者
王政
李飒
+2 位作者
陈洪界
李江涛
陈伟
《地震工程与工程振动》
CSCD
北大核心
2023年第5期240-248,共9页
钢筋混凝土工程的建造规模与要求日益提升,传统的钢筋检验方法无法在效率和数量上满足工程检查的需求,且施工现场钢筋背景环境复杂多变,单一的图像识别算法无法利用到钢筋的特征信息,在精度上不能满足建筑智能监理的验收标准。为了解决...
钢筋混凝土工程的建造规模与要求日益提升,传统的钢筋检验方法无法在效率和数量上满足工程检查的需求,且施工现场钢筋背景环境复杂多变,单一的图像识别算法无法利用到钢筋的特征信息,在精度上不能满足建筑智能监理的验收标准。为了解决这方面的问题,提出一种改进的DeeplabV3+模型对钢筋识别。研究表明:通过减小空洞卷积膨胀率以及空洞卷积密度,降低模型感受野,提高了细部边缘特征信息的提取率;通过加入注意力机制实现模型对钢筋特征信息的敏感程度。之后利用图像处理技术对识别图进行检测,获得钢筋各项尺寸。在施工现场收集钢筋图像并整理成数据集,并在此数据集上进行算法检验。实验结果表明,改进的DeeplabV3+模型和原模型相比,在平均交并比、像素精确率、召回率上分别提升了5.14%、0.27%、5.19%,钢筋直径和间距的尺寸检测精度也达到了工程验收的标准。
展开更多
关键词
智能检测
钢筋尺寸检测
DeeplabV3+模型
注意力机制
在线阅读
下载PDF
职称材料
基于Res-AA U-Net模型的楼板双层钢筋尺寸测量算法研究
2
作者
陈婉清
李刚
+2 位作者
盛明辉
付相林
陈伟
《建筑科学与工程学报》
2025年第3期103-114,共12页
钢筋工程检测存在验收人力资源消耗大和时间成本高的问题,特别是楼板双层钢筋的尺寸验收时,由于上层钢筋覆盖下层钢筋导致测量难度增加,而传统的图像处理方法难以满足测量精度要求,为此提出一种基于Res-AA U-Net的楼板双层钢筋尺寸自动...
钢筋工程检测存在验收人力资源消耗大和时间成本高的问题,特别是楼板双层钢筋的尺寸验收时,由于上层钢筋覆盖下层钢筋导致测量难度增加,而传统的图像处理方法难以满足测量精度要求,为此提出一种基于Res-AA U-Net的楼板双层钢筋尺寸自动测量方法。该方法对Resnet34进行改进,修剪其网络结构并优化损失函数,用改进的Resnet34代替U-Net的特征提取器,用注意力门机制代替跳跃连接,同时在U-Net底部加入改进ASPP模块,构建包含3355张楼板钢筋图像的数据集,最后利用迁移学习技术加快模型训练速度。结果表明:基于Res-AA U-Net模型的钢筋分割效果优于U-Net、Deeplab v3+、HRNet、PSPNet等经典分割网络,平均交并比、像素精确率和召回率分别达到92.81%、96.02%、94.49%;相较于原U-Net,Res-AA U-Net的钢筋直径测量和钢筋间距测量误差分别减小13.63%、5.82%,测量精度满足钢筋工程验收标准中双层楼板钢筋的验收要求,可有效提升钢筋工程验收效率与智能化水平。
展开更多
关键词
楼板双层钢筋
尺寸测量
U-Net模型
注意力门机制
Resnet34网络
迁移学习
ASPP模块
在线阅读
下载PDF
职称材料
题名
基于改进DeeplabV3+的钢筋尺寸检测算法
被引量:
2
1
作者
王政
李飒
陈洪界
李江涛
陈伟
机构
武汉誉城九方建筑有限公司
长沙理工大学土木工程学院
出处
《地震工程与工程振动》
CSCD
北大核心
2023年第5期240-248,共9页
基金
国家自然科学基金项目(51408063)。
文摘
钢筋混凝土工程的建造规模与要求日益提升,传统的钢筋检验方法无法在效率和数量上满足工程检查的需求,且施工现场钢筋背景环境复杂多变,单一的图像识别算法无法利用到钢筋的特征信息,在精度上不能满足建筑智能监理的验收标准。为了解决这方面的问题,提出一种改进的DeeplabV3+模型对钢筋识别。研究表明:通过减小空洞卷积膨胀率以及空洞卷积密度,降低模型感受野,提高了细部边缘特征信息的提取率;通过加入注意力机制实现模型对钢筋特征信息的敏感程度。之后利用图像处理技术对识别图进行检测,获得钢筋各项尺寸。在施工现场收集钢筋图像并整理成数据集,并在此数据集上进行算法检验。实验结果表明,改进的DeeplabV3+模型和原模型相比,在平均交并比、像素精确率、召回率上分别提升了5.14%、0.27%、5.19%,钢筋直径和间距的尺寸检测精度也达到了工程验收的标准。
关键词
智能检测
钢筋尺寸检测
DeeplabV3+模型
注意力机制
Keywords
intelligent detection
rebar size measurement
DeeplabV3+model
attention mechnism
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
基于Res-AA U-Net模型的楼板双层钢筋尺寸测量算法研究
2
作者
陈婉清
李刚
盛明辉
付相林
陈伟
机构
武汉誉城九方建筑有限公司
出处
《建筑科学与工程学报》
2025年第3期103-114,共12页
基金
国家自然科学基金项目(514080634)。
文摘
钢筋工程检测存在验收人力资源消耗大和时间成本高的问题,特别是楼板双层钢筋的尺寸验收时,由于上层钢筋覆盖下层钢筋导致测量难度增加,而传统的图像处理方法难以满足测量精度要求,为此提出一种基于Res-AA U-Net的楼板双层钢筋尺寸自动测量方法。该方法对Resnet34进行改进,修剪其网络结构并优化损失函数,用改进的Resnet34代替U-Net的特征提取器,用注意力门机制代替跳跃连接,同时在U-Net底部加入改进ASPP模块,构建包含3355张楼板钢筋图像的数据集,最后利用迁移学习技术加快模型训练速度。结果表明:基于Res-AA U-Net模型的钢筋分割效果优于U-Net、Deeplab v3+、HRNet、PSPNet等经典分割网络,平均交并比、像素精确率和召回率分别达到92.81%、96.02%、94.49%;相较于原U-Net,Res-AA U-Net的钢筋直径测量和钢筋间距测量误差分别减小13.63%、5.82%,测量精度满足钢筋工程验收标准中双层楼板钢筋的验收要求,可有效提升钢筋工程验收效率与智能化水平。
关键词
楼板双层钢筋
尺寸测量
U-Net模型
注意力门机制
Resnet34网络
迁移学习
ASPP模块
Keywords
floor slab double-layer rebar
dimension measurement
U-Net model
attention gate mechanism
ResNet34 network
transfer learning
ASPP module
分类号
TU398 [建筑科学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进DeeplabV3+的钢筋尺寸检测算法
王政
李飒
陈洪界
李江涛
陈伟
《地震工程与工程振动》
CSCD
北大核心
2023
2
在线阅读
下载PDF
职称材料
2
基于Res-AA U-Net模型的楼板双层钢筋尺寸测量算法研究
陈婉清
李刚
盛明辉
付相林
陈伟
《建筑科学与工程学报》
2025
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部