期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
分布外检测中训练与测试的内外数据整合
1
作者 王祉苑 彭涛 杨捷 《计算机应用》 北大核心 2025年第8期2497-2506,共10页
分布外(OOD)检测旨在识别偏离训练数据分布的外来样本,以规避模型对异常情况的错误预测。由于真实OOD数据的不可知性,目前基于预训练语言模型(PLM)的OOD检测方法尚未同时评估OOD分布在训练与测试阶段对检测性能的影响。针对这一问题,提... 分布外(OOD)检测旨在识别偏离训练数据分布的外来样本,以规避模型对异常情况的错误预测。由于真实OOD数据的不可知性,目前基于预训练语言模型(PLM)的OOD检测方法尚未同时评估OOD分布在训练与测试阶段对检测性能的影响。针对这一问题,提出一种训练与测试阶段整合内外数据的OOD文本检测框架(IEDOD-TT)。该框架分阶段采用不同的数据整合策略:在训练阶段通过掩码语言模型(MLM)在原始训练集上生成伪OOD数据集,并引入对比学习增强内外数据之间的特征差异;在测试阶段通过结合内外数据分布的密度估计设计一个综合的OOD检测评分指标。实验结果表明,所提方法在CLINC150、NEWS-TOP5、SST2和YELP这4个数据集上的综合表现与最优基线方法 doSCL-cMaha相比,平均接受者操作特征曲线下面积(AUROC)提升了1.56个百分点,平均95%真阳性率下的假阳性率(FPR95)降低了2.83个百分点;与所提方法的最佳变体IS/IEDOD-TT(ID Single/IEDOD-TT)相比,所提方法在这4个数据集上的平均AUROC提升了1.61个百分点,平均FPR95降低了2.71个百分点。实验结果证明了IEDOD-TT在处理文本分类任务时针对不同数据分布偏移的有效性,并验证了综合考虑内外数据分布的额外性能提升。 展开更多
关键词 分布外检测 预训练语言模型 内外数据整合 对比学习 文本分类
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部