The correct rate of detection for fabric defect is affected by low contrast of images. Aiming at the problem,frequencytuned salient map is used to detect the fabric defect. Firstly,the images of fabric defect are divi...The correct rate of detection for fabric defect is affected by low contrast of images. Aiming at the problem,frequencytuned salient map is used to detect the fabric defect. Firstly,the images of fabric defect are divided into blocks. Then,the blocks are highlighted by frequency-tuned salient algorithm. Simultaneously,gray-level co-occurrence matrix is used to extract the characteristic value of each rectangular patch. Finally,PNN is used to detect the defect on the fabric image. The performance of proposed algorithm is estimated off-line by two sets of fabric defect images. The theoretical argument is supported by experimental results.展开更多
Aimed at low contrast effect on fabric detection,a method based on bilateral filter and frangi filter is proposed. Firstly,in order to reduce the influence of fabric background texture information on the detection res...Aimed at low contrast effect on fabric detection,a method based on bilateral filter and frangi filter is proposed. Firstly,in order to reduce the influence of fabric background texture information on the detection results,bilateral filter is used to deal with the fabric image. Then frangi filter is used to filter the fabric image after bilateral filtering to enhance the fabric defect area information. Finally,a maximum entropy method is implemented on the fabric image after frangi filtering to separate the defected area. Experimental results show that the proposed method can effectively detect defects.展开更多
文摘The correct rate of detection for fabric defect is affected by low contrast of images. Aiming at the problem,frequencytuned salient map is used to detect the fabric defect. Firstly,the images of fabric defect are divided into blocks. Then,the blocks are highlighted by frequency-tuned salient algorithm. Simultaneously,gray-level co-occurrence matrix is used to extract the characteristic value of each rectangular patch. Finally,PNN is used to detect the defect on the fabric image. The performance of proposed algorithm is estimated off-line by two sets of fabric defect images. The theoretical argument is supported by experimental results.
文摘Aimed at low contrast effect on fabric detection,a method based on bilateral filter and frangi filter is proposed. Firstly,in order to reduce the influence of fabric background texture information on the detection results,bilateral filter is used to deal with the fabric image. Then frangi filter is used to filter the fabric image after bilateral filtering to enhance the fabric defect area information. Finally,a maximum entropy method is implemented on the fabric image after frangi filtering to separate the defected area. Experimental results show that the proposed method can effectively detect defects.