期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进CNN-GAP-SVM的船舶电力变换器快速故障诊断方法
被引量:
10
1
作者
宫文峰
陈辉
+2 位作者
WANG Danwei
张泽辉
高海波
《计算机集成制造系统》
EI
CSCD
北大核心
2022年第5期1370-1384,共15页
近年来,基于深度学习技术的智能故障诊断方法在电力变换器领域得到了广泛研究。卷积神经网络(CNN)因其强大的特征提取能力而具备辨识早期微小故障的潜力。然而,现行的CNN算法因其模型结构过于复杂、训练参数量较多、诊断时间较长而不适...
近年来,基于深度学习技术的智能故障诊断方法在电力变换器领域得到了广泛研究。卷积神经网络(CNN)因其强大的特征提取能力而具备辨识早期微小故障的潜力。然而,现行的CNN算法因其模型结构过于复杂、训练参数量较多、诊断时间较长而不适用于电气故障的快速诊断。为此,提出了一种基于改进CNN-GAP-SVM的深度学习新算法,用于DC-DC变换器早期故障的快速诊断。首先,将原始的时间序列监测数据转变为二维特征图故障样本;其次,该方法设计了一个全局均值池化(GAP)层,用于代替传统CNN中2~3层的全连接层部分,以减少模型参数量;然后,采用非线性支持向量机(SVM)代替传统Softmax函数作为最终分类器,进一步提升诊断精度。实验表明:所提方法不仅将诊断准确率提升至100%,还提升了23%的诊断速度。通过与传统智能诊断方法相比较,证明了所提方法具有更快的诊断速度和更高的诊断准确率。
展开更多
关键词
智能故障诊断
卷积神经网络
支持向量机
DC-DC变换器
开路故障
在线阅读
下载PDF
职称材料
题名
基于改进CNN-GAP-SVM的船舶电力变换器快速故障诊断方法
被引量:
10
1
作者
宫文峰
陈辉
WANG Danwei
张泽辉
高海波
机构
武汉理工大学高性能船舶技术教育部重点实验室仿真中心
桂林电子科技
大学
北海校区海洋工程学院
南洋理
工大
学电子与电气工程学院ST Engineering-NTU联合
实验室
出处
《计算机集成制造系统》
EI
CSCD
北大核心
2022年第5期1370-1384,共15页
基金
广西自然科学基金资助项目(2020GXNSFBA159058)
国家重点研发计划资助项目(2019YFE0104600)
+2 种基金
国家自然科学基金资助项目(51579200,U1709215)
中央高校基本科研业务费专项资助优秀博士学位论文资助项目(2019-YB-023)
中国国家留学基金委博士联合培养资助项目(CSC201906950020)。
文摘
近年来,基于深度学习技术的智能故障诊断方法在电力变换器领域得到了广泛研究。卷积神经网络(CNN)因其强大的特征提取能力而具备辨识早期微小故障的潜力。然而,现行的CNN算法因其模型结构过于复杂、训练参数量较多、诊断时间较长而不适用于电气故障的快速诊断。为此,提出了一种基于改进CNN-GAP-SVM的深度学习新算法,用于DC-DC变换器早期故障的快速诊断。首先,将原始的时间序列监测数据转变为二维特征图故障样本;其次,该方法设计了一个全局均值池化(GAP)层,用于代替传统CNN中2~3层的全连接层部分,以减少模型参数量;然后,采用非线性支持向量机(SVM)代替传统Softmax函数作为最终分类器,进一步提升诊断精度。实验表明:所提方法不仅将诊断准确率提升至100%,还提升了23%的诊断速度。通过与传统智能诊断方法相比较,证明了所提方法具有更快的诊断速度和更高的诊断准确率。
关键词
智能故障诊断
卷积神经网络
支持向量机
DC-DC变换器
开路故障
Keywords
intelligent fault diagnosis
convolutional neural network
support vector machine
DC-DC converter
open-circuit fault
分类号
TH165.3 [机械工程—机械制造及自动化]
TP277 [自动化与计算机技术—检测技术与自动化装置]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进CNN-GAP-SVM的船舶电力变换器快速故障诊断方法
宫文峰
陈辉
WANG Danwei
张泽辉
高海波
《计算机集成制造系统》
EI
CSCD
北大核心
2022
10
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部