Currently,the International Maritime Organization(IMO)has approved and implemented the assessment requirement for Minimum Propulsion Power(MPP)of ships in adverse sea conditions.The assessment method and relevant infl...Currently,the International Maritime Organization(IMO)has approved and implemented the assessment requirement for Minimum Propulsion Power(MPP)of ships in adverse sea conditions.The assessment method and relevant influence factors will have a vital impact on ship's design and operation.On the other hand,MPP is essentially a criterion for manoeuvring safety at actual seas.However,the practical assessment methods adopted in IMO guidelines do not directly and accurately account for ship's coursekeeping ability in severe seas.A time-domain comprehensive method with supplementary course-keeping ability criteria has been proposed in the authors'preliminary research.Based on an updated mathematical model and criteria,this paper presents more detailed elaborations,results and discussions on the time-domain method,including the comparative analyses with a power line method and two steady-state equilibrium methods based on IMO guidelines and draft.Discussions on the influences of key factors,involving criterion conditions and calculation parameters,are also presented.The results indicate that different methods exhibit varying advantages and complexity in MPP assessment,thus constituting a multi-level assessment framework for MPP.In particular,the time-domain comprehensive assessment has a higher accuracy with more realistic description of manoeuvre behaviors,capable of offering a solution for the ships that cannot meet other assessments,or for the assessment requiring additional course-keeping ability.Furthermore,an expanded range of wave direction sets a stricter but potentially necessary requirement,while using the self-propulsion factors at low speeds can eliminate the unnecessary conservation of assessment result caused by those at design speed.展开更多
This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only b...This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only be obtained by some USVs.In order to achieve semi-encirclement tracking of noncooperative targets under maritime security conditions,a fixed-time tracking control method based on dynamic surface control(DSC)is proposed in this paper.Firstly,a novel TACC architecture with decoupled kinematic control law and decoupled kinetic control law was designed to reduce the complexity of control system design.Secondly,the proposed DSC-based target-guided kinematic control law including tracking points pre-allocation strategy and sigmoid artificial potential functions(SigAPFs)can avoid collisions during tracking process and optimize kinematic control output.Finally,a fixed-time TACC system was proposed to achieve fast convergence of kinematic and kinetics errors.The effectiveness of the proposed TACC approach in improving target tracking safety and reducing control output chattering was verified by simulation comparison results.展开更多
Marine structures are frequently subjected to repeated impact loadings,resulting in failure of the structures,even causing serious accidents.The analytical expressions of dimensionless permanent deflection and impact ...Marine structures are frequently subjected to repeated impact loadings,resulting in failure of the structures,even causing serious accidents.The analytical expressions of dimensionless permanent deflection and impact force of a metal beam based on maximal normal yield surface are derived by membrane factor method(MFM),then the results are compared with repeated impact tests.It can be found that the solutions based on MFM are between the upper and lower bounds,and very close to the results of the repeated impact tests,indicating the theoretical model proposed can predict the plastic responses of the metal beam accurately.What’s more,the influences of impact location and boundary condition on the dynamic responses of the beam subjected to repeated impacts are determined.Results show that,as the distance of impact location from the middle span of the beam increases,the permanent deflection decreases,while the impact force increases.Meanwhile,the influences of impact location enhance as the impact number increases.When the permanent deflection is smaller than the thickness,the effect of boundary condition on the plastic responses is significant.However,when the deflection is larger than the thickness,the beam will be like a string and only axial force works,resulting in little influence of boundary condition on the plastic responses of the beam.展开更多
To further investigate the forming mechanism and springback characteristics of strips under multi-square punch forming (MSPF) considering partial-unloading effects, a series of concave form ing tests of strips are con...To further investigate the forming mechanism and springback characteristics of strips under multi-square punch forming (MSPF) considering partial-unloading effects, a series of concave form ing tests of strips are conducted on the MSPF machine. This paper aims to reveal the physical mecha nism of the elastic-plastic deformation in the MSPF process considering the effect of the forming ap proaches, and derive appropriate mathematical interpretations. The theoretical model is firstly estab lished to analyse the concave forming mechanism and springback characteristics of the strip, and its accuracy is then validated by experimental data. The forming history and load evolutions are depicted to explore the required forming capacity through the proposed analytical method. Besides, the paramet ric studies are carried out to discuss their effects on the springback of the strip. The results suggest that the deformation paths of the strip are influenced by the forming approach, and the springback of the strip in convex forming is larger than that in concave forming.展开更多
文摘Currently,the International Maritime Organization(IMO)has approved and implemented the assessment requirement for Minimum Propulsion Power(MPP)of ships in adverse sea conditions.The assessment method and relevant influence factors will have a vital impact on ship's design and operation.On the other hand,MPP is essentially a criterion for manoeuvring safety at actual seas.However,the practical assessment methods adopted in IMO guidelines do not directly and accurately account for ship's coursekeeping ability in severe seas.A time-domain comprehensive method with supplementary course-keeping ability criteria has been proposed in the authors'preliminary research.Based on an updated mathematical model and criteria,this paper presents more detailed elaborations,results and discussions on the time-domain method,including the comparative analyses with a power line method and two steady-state equilibrium methods based on IMO guidelines and draft.Discussions on the influences of key factors,involving criterion conditions and calculation parameters,are also presented.The results indicate that different methods exhibit varying advantages and complexity in MPP assessment,thus constituting a multi-level assessment framework for MPP.In particular,the time-domain comprehensive assessment has a higher accuracy with more realistic description of manoeuvre behaviors,capable of offering a solution for the ships that cannot meet other assessments,or for the assessment requiring additional course-keeping ability.Furthermore,an expanded range of wave direction sets a stricter but potentially necessary requirement,while using the self-propulsion factors at low speeds can eliminate the unnecessary conservation of assessment result caused by those at design speed.
文摘This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only be obtained by some USVs.In order to achieve semi-encirclement tracking of noncooperative targets under maritime security conditions,a fixed-time tracking control method based on dynamic surface control(DSC)is proposed in this paper.Firstly,a novel TACC architecture with decoupled kinematic control law and decoupled kinetic control law was designed to reduce the complexity of control system design.Secondly,the proposed DSC-based target-guided kinematic control law including tracking points pre-allocation strategy and sigmoid artificial potential functions(SigAPFs)can avoid collisions during tracking process and optimize kinematic control output.Finally,a fixed-time TACC system was proposed to achieve fast convergence of kinematic and kinetics errors.The effectiveness of the proposed TACC approach in improving target tracking safety and reducing control output chattering was verified by simulation comparison results.
文摘Marine structures are frequently subjected to repeated impact loadings,resulting in failure of the structures,even causing serious accidents.The analytical expressions of dimensionless permanent deflection and impact force of a metal beam based on maximal normal yield surface are derived by membrane factor method(MFM),then the results are compared with repeated impact tests.It can be found that the solutions based on MFM are between the upper and lower bounds,and very close to the results of the repeated impact tests,indicating the theoretical model proposed can predict the plastic responses of the metal beam accurately.What’s more,the influences of impact location and boundary condition on the dynamic responses of the beam subjected to repeated impacts are determined.Results show that,as the distance of impact location from the middle span of the beam increases,the permanent deflection decreases,while the impact force increases.Meanwhile,the influences of impact location enhance as the impact number increases.When the permanent deflection is smaller than the thickness,the effect of boundary condition on the plastic responses is significant.However,when the deflection is larger than the thickness,the beam will be like a string and only axial force works,resulting in little influence of boundary condition on the plastic responses of the beam.
文摘To further investigate the forming mechanism and springback characteristics of strips under multi-square punch forming (MSPF) considering partial-unloading effects, a series of concave form ing tests of strips are conducted on the MSPF machine. This paper aims to reveal the physical mecha nism of the elastic-plastic deformation in the MSPF process considering the effect of the forming ap proaches, and derive appropriate mathematical interpretations. The theoretical model is firstly estab lished to analyse the concave forming mechanism and springback characteristics of the strip, and its accuracy is then validated by experimental data. The forming history and load evolutions are depicted to explore the required forming capacity through the proposed analytical method. Besides, the paramet ric studies are carried out to discuss their effects on the springback of the strip. The results suggest that the deformation paths of the strip are influenced by the forming approach, and the springback of the strip in convex forming is larger than that in concave forming.