图神经网络是一种强大的学习图数据的模型,通过节点信息嵌入和图卷积运算实现图结构数据的表示。图数据中节点的结构信息和节点的位置信息对获取图特征至关重要,但现有的图神经网络同时捕获位置信息和结构信息的表达能力有限。对此,提...图神经网络是一种强大的学习图数据的模型,通过节点信息嵌入和图卷积运算实现图结构数据的表示。图数据中节点的结构信息和节点的位置信息对获取图特征至关重要,但现有的图神经网络同时捕获位置信息和结构信息的表达能力有限。对此,提出了一种新的图神经网络——融合位置和结构信息的图神经网络(Positional and Structural Information with Graph Neural Networks, PSI-GNN)。PSI-GNN的核心思想在于利用编码器获取节点的位置和结构信息,并将这些信息特征嵌入到网络中。通过在网络中更新和传递这两种信息,PSI-GNN实现了对位置和结构信息的有效融合与利用,为解决上述问题提供了有效的解决方案。同时,为应对不同类型的图学习任务,PSI-GNN给予位置和结构信息以不同的权重来应对不同的下游任务。为了验证PSI-GNN的有效性,在多个基准图数据集上进行了实验。实验结果表明,PSI-GNN在节点级任务上最高提升了约14%,在图级任务上最高提升了约35%,验证了PSI-GNN在同时捕获位置和结构信息方面的有效性。展开更多
针对只有硬模块的布图规划问题,通常将其构建成组合优化模型,但求解过程时间成本高。为提高求解效率,提出了一种基于非光滑解析数学规划的布图规划算法。基于布图中器件的坐标表示,构建了一个泛化的非光滑解析数学规划模型,将不同场景...针对只有硬模块的布图规划问题,通常将其构建成组合优化模型,但求解过程时间成本高。为提高求解效率,提出了一种基于非光滑解析数学规划的布图规划算法。基于布图中器件的坐标表示,构建了一个泛化的非光滑解析数学规划模型,将不同场景下的布图规划问题的不同优化阶段处理为该泛化模型的特例,并利用共轭次梯度算法(conjugate sub-gradient algorithm,CSA)对其进行求解。针对固定轮廓布图规划问题,通过统一框架下的全局布图规划、合法化、局部优化三个阶段,实现了在固定轮廓约束下的线长优化。针对无固定轮廓约束问题,提出了带黄金分割策略的共轭次梯度算法(conjugate sub-gradient algorithm with golden section strategy,CSA_GSS),利用黄金分割策略缩小固定轮廓的面积,达到面积和线长双优化的效果。实验在GSRC测试电路上与基于B*-树表示的布图规划算法进行比较,该算法对于大规模电路在线长和时间方面均占据优势。实验结果表明,该算法能以更低的时间复杂度获得更优的线长。展开更多
文摘图神经网络是一种强大的学习图数据的模型,通过节点信息嵌入和图卷积运算实现图结构数据的表示。图数据中节点的结构信息和节点的位置信息对获取图特征至关重要,但现有的图神经网络同时捕获位置信息和结构信息的表达能力有限。对此,提出了一种新的图神经网络——融合位置和结构信息的图神经网络(Positional and Structural Information with Graph Neural Networks, PSI-GNN)。PSI-GNN的核心思想在于利用编码器获取节点的位置和结构信息,并将这些信息特征嵌入到网络中。通过在网络中更新和传递这两种信息,PSI-GNN实现了对位置和结构信息的有效融合与利用,为解决上述问题提供了有效的解决方案。同时,为应对不同类型的图学习任务,PSI-GNN给予位置和结构信息以不同的权重来应对不同的下游任务。为了验证PSI-GNN的有效性,在多个基准图数据集上进行了实验。实验结果表明,PSI-GNN在节点级任务上最高提升了约14%,在图级任务上最高提升了约35%,验证了PSI-GNN在同时捕获位置和结构信息方面的有效性。
文摘针对只有硬模块的布图规划问题,通常将其构建成组合优化模型,但求解过程时间成本高。为提高求解效率,提出了一种基于非光滑解析数学规划的布图规划算法。基于布图中器件的坐标表示,构建了一个泛化的非光滑解析数学规划模型,将不同场景下的布图规划问题的不同优化阶段处理为该泛化模型的特例,并利用共轭次梯度算法(conjugate sub-gradient algorithm,CSA)对其进行求解。针对固定轮廓布图规划问题,通过统一框架下的全局布图规划、合法化、局部优化三个阶段,实现了在固定轮廓约束下的线长优化。针对无固定轮廓约束问题,提出了带黄金分割策略的共轭次梯度算法(conjugate sub-gradient algorithm with golden section strategy,CSA_GSS),利用黄金分割策略缩小固定轮廓的面积,达到面积和线长双优化的效果。实验在GSRC测试电路上与基于B*-树表示的布图规划算法进行比较,该算法对于大规模电路在线长和时间方面均占据优势。实验结果表明,该算法能以更低的时间复杂度获得更优的线长。