期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多尺度卷积神经网络的自适应熵加权决策融合船舶图像分类方法
被引量:
13
1
作者
任永梅
杨杰
+1 位作者
郭志强
曹辉
《电子与信息学报》
EI
CSCD
北大核心
2021年第5期1424-1431,共8页
针对单一尺度卷积神经网络(CNN)对船舶图像分类的局限性,该文提出一种多尺度CNN自适应熵加权决策融合方法用于船舶图像分类。首先使用多尺度CNN提取不同尺寸的船舶图像的多尺度特征,并训练得到不同子网络的最优模型;接着利用测试集船舶...
针对单一尺度卷积神经网络(CNN)对船舶图像分类的局限性,该文提出一种多尺度CNN自适应熵加权决策融合方法用于船舶图像分类。首先使用多尺度CNN提取不同尺寸的船舶图像的多尺度特征,并训练得到不同子网络的最优模型;接着利用测试集船舶图像在最优模型上测试,得到多尺度CNN的Softmax函数输出的概率值,并计算得到信息熵,进而实现对不同输入船舶图像赋予自适应的融合权重;最后对不同子网络的Softmax函数输出概率值进行自适应熵加权决策融合实现船舶图像的最终分类。在VAIS数据集和自建数据集上分别进行了实验,提出的方法的分类准确率分别达到了95.07%和97.50%,实验结果表明,与单一尺度CNN分类方法以及其他较新方法相比,所提方法具有更优的分类性能。
展开更多
关键词
图像处理
船舶图像分类
多尺度卷积神经网络
熵
决策融合
在线阅读
下载PDF
职称材料
题名
基于多尺度卷积神经网络的自适应熵加权决策融合船舶图像分类方法
被引量:
13
1
作者
任永梅
杨杰
郭志强
曹辉
机构
武汉理工大学信息工程学院宽带无线通信与传感器网络湖北省重点实验室
湖南工
学院
电气与
信息
工程
学院
出处
《电子与信息学报》
EI
CSCD
北大核心
2021年第5期1424-1431,共8页
基金
国家自然科学基金(51879211)
国家重点研发计划(2020YFB1710800)
湖南省教育厅科学研究项目(18C0900)。
文摘
针对单一尺度卷积神经网络(CNN)对船舶图像分类的局限性,该文提出一种多尺度CNN自适应熵加权决策融合方法用于船舶图像分类。首先使用多尺度CNN提取不同尺寸的船舶图像的多尺度特征,并训练得到不同子网络的最优模型;接着利用测试集船舶图像在最优模型上测试,得到多尺度CNN的Softmax函数输出的概率值,并计算得到信息熵,进而实现对不同输入船舶图像赋予自适应的融合权重;最后对不同子网络的Softmax函数输出概率值进行自适应熵加权决策融合实现船舶图像的最终分类。在VAIS数据集和自建数据集上分别进行了实验,提出的方法的分类准确率分别达到了95.07%和97.50%,实验结果表明,与单一尺度CNN分类方法以及其他较新方法相比,所提方法具有更优的分类性能。
关键词
图像处理
船舶图像分类
多尺度卷积神经网络
熵
决策融合
Keywords
Image processing
Ship image classification
Multi-scale Convolutional Neural Network(CNN)
Entropy
Decision fusion
分类号
TN911.73 [电子电信—通信与信息系统]
TP391.4 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多尺度卷积神经网络的自适应熵加权决策融合船舶图像分类方法
任永梅
杨杰
郭志强
曹辉
《电子与信息学报》
EI
CSCD
北大核心
2021
13
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部