期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于XGBoost的COVID-19患者重症风险早期预测模型的建立与评价
被引量:
9
1
作者
王铭
程振豪
+5 位作者
胡苗
唐铭成
徐福民
王莉
粘永健
刘凯军
《陆军军医大学学报》
CAS
CSCD
北大核心
2022年第3期195-202,共8页
目的利用新型冠状病毒病(corona virus disease 2019,COVID-19)患者的临床特征数据构建XGBoost预测模型,并评价预测模型对COVID-19患者重症进展风险早期预测的效能。方法对2020年2月10日至4月5日火神山医院病案系统内经实验室确诊的COVI...
目的利用新型冠状病毒病(corona virus disease 2019,COVID-19)患者的临床特征数据构建XGBoost预测模型,并评价预测模型对COVID-19患者重症进展风险早期预测的效能。方法对2020年2月10日至4月5日火神山医院病案系统内经实验室确诊的COVID-19患者进行筛选,共收集347例有完整医疗信息和实验室检查结果的患者数据。首先筛选出21个具有显著性差异的指标作为训练模型的输入特征;对构建的XGBoost模型进行贝叶斯优化以调整参数,并基于特征重要性筛选出最优特征组合;进一步分析各特征数值大小对预测结果的正负影响,利用SHAP(SHapley Additive exPlanation)对各特征重要性进行量化和归因;对XGBoost预测模型进行性能评价,并将其与其他机器学习方法进行对比,讨论其优势所在。结果本研究选取21个重症组与非重症组差异显著的特征进行训练和验证。在K最邻近(k-nearest neighbor,KNN)模型中具有10个特征的最优子集获得了验证集中4个模型中曲线下面积(area under curve,AUC)值的最高值。年龄、脉率、白细胞计数、中性粒细胞计数、C-反应蛋白、总胆红素、肌酐、D-二聚体(D-Dimer)越高,疾病重症风险越高;淋巴细胞计数、白蛋白水平越低,疾病重症风险越高。XGBoost与支持向量机的预测性能优于其他机器学习方法(在测试集上AUC值分别为0.9420、0.9594),其中XGBoost训练速度明显更优。结论基于XGBoost成功建立了预测模型,以最优特征子集实现了对COVID-19患者重症进展风险的早期预测。
展开更多
关键词
COVID-19
重症风险
预测模型
XGBoost
SHAP
在线阅读
下载PDF
职称材料
题名
基于XGBoost的COVID-19患者重症风险早期预测模型的建立与评价
被引量:
9
1
作者
王铭
程振豪
胡苗
唐铭成
徐福民
王莉
粘永健
刘凯军
机构
陆军特色医学中心消化内
科
陆军军医大学(第三军医大学)生物医学工程与影像医学系
陆军军医大学(第三军医大学)基础医学院学员五大队
武汉市火神山医院感染一科
出处
《陆军军医大学学报》
CAS
CSCD
北大核心
2022年第3期195-202,共8页
文摘
目的利用新型冠状病毒病(corona virus disease 2019,COVID-19)患者的临床特征数据构建XGBoost预测模型,并评价预测模型对COVID-19患者重症进展风险早期预测的效能。方法对2020年2月10日至4月5日火神山医院病案系统内经实验室确诊的COVID-19患者进行筛选,共收集347例有完整医疗信息和实验室检查结果的患者数据。首先筛选出21个具有显著性差异的指标作为训练模型的输入特征;对构建的XGBoost模型进行贝叶斯优化以调整参数,并基于特征重要性筛选出最优特征组合;进一步分析各特征数值大小对预测结果的正负影响,利用SHAP(SHapley Additive exPlanation)对各特征重要性进行量化和归因;对XGBoost预测模型进行性能评价,并将其与其他机器学习方法进行对比,讨论其优势所在。结果本研究选取21个重症组与非重症组差异显著的特征进行训练和验证。在K最邻近(k-nearest neighbor,KNN)模型中具有10个特征的最优子集获得了验证集中4个模型中曲线下面积(area under curve,AUC)值的最高值。年龄、脉率、白细胞计数、中性粒细胞计数、C-反应蛋白、总胆红素、肌酐、D-二聚体(D-Dimer)越高,疾病重症风险越高;淋巴细胞计数、白蛋白水平越低,疾病重症风险越高。XGBoost与支持向量机的预测性能优于其他机器学习方法(在测试集上AUC值分别为0.9420、0.9594),其中XGBoost训练速度明显更优。结论基于XGBoost成功建立了预测模型,以最优特征子集实现了对COVID-19患者重症进展风险的早期预测。
关键词
COVID-19
重症风险
预测模型
XGBoost
SHAP
Keywords
COVID-19
risk for severe illners
prediction model
XGBoost
SHAP
分类号
R319 [医药卫生—基础医学]
R512.99 [医药卫生—内科学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于XGBoost的COVID-19患者重症风险早期预测模型的建立与评价
王铭
程振豪
胡苗
唐铭成
徐福民
王莉
粘永健
刘凯军
《陆军军医大学学报》
CAS
CSCD
北大核心
2022
9
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部