期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于CEEMDAN-CNN-GRU组合模型的短期负荷预测方法 被引量:14
1
作者 万磊 余飞 +1 位作者 鲁统伟 姚婧 《河北科技大学学报》 CAS 北大核心 2022年第2期154-161,共8页
负荷数据的高度随机性和不确定性,导致短期负荷预测的精度很难提升。为了提高短期负荷预测的准确度,提出了一种基于完全自适应噪声集合经验模态分解(CEEMDAN)与卷积神经网络(CNN)和门控循环单元(GRU)组合模型的短期负荷预测方法。首先,... 负荷数据的高度随机性和不确定性,导致短期负荷预测的精度很难提升。为了提高短期负荷预测的准确度,提出了一种基于完全自适应噪声集合经验模态分解(CEEMDAN)与卷积神经网络(CNN)和门控循环单元(GRU)组合模型的短期负荷预测方法。首先,利用CEEMDAN模型将复杂的原始负荷序列分解为几个相对简单的子序列;其次,利用卷积神经网络(CNN)和门控循环单元(GRU)建立各分量预测模型,将归一化后的分量输入训练模型,得到预测子序列;最后,将所有分量的结果汇总,得到最终预测结果。结果表明,与LSTM模型、GRU模型、CNN-GRU及CEEMDAN-GRU组合模型相比,CEEMDAN-CNN-GRU组合模型所测精度有了明显提升,平均提升了25.08%,23.59%,20.41%和13.53%。CEEMDAN-CNN-GRU组合模型能够提取历史负荷数据中的非线性特征,有效提升短期负荷预测精度,可为电力系统建设提供有力支撑。 展开更多
关键词 数据处理 卷积神经网络 互补集合模态分解 门控循环单元 负荷预测 电力系统
在线阅读 下载PDF
基于特征融合的棉花幼苗计数算法 被引量:9
2
作者 祁洋 李亚楠 +1 位作者 孙明 徐文霞 《农业工程学报》 EI CAS CSCD 北大核心 2022年第9期180-186,共7页
为了获取棉花幼苗数量,掌握播种成活率和出苗率等关键苗情信息,该研究提出一种基于特征融合的棉花幼苗计数算法。首先,该算法采用VGG-16作为基础模块提取图像特征,使用注意力模块(Convolutional Block Attention Module,CBAM)在通道和... 为了获取棉花幼苗数量,掌握播种成活率和出苗率等关键苗情信息,该研究提出一种基于特征融合的棉花幼苗计数算法。首先,该算法采用VGG-16作为基础模块提取图像特征,使用注意力模块(Convolutional Block Attention Module,CBAM)在通道和空间维度上进行特征增强,然后将增强后的特征与基础模块中的特征进行融合,进一步强化幼苗特征表达,最后通过去冗余和归一化操作得到计数结果。此外,还构建了一个包含399张棉花幼苗图像的数据集,其中包含了对212572株幼苗的精准手工标注点标签。在该数据集上的测试结果表明,所提出的棉花幼苗计数算法取得了较好的计数效果,平均计数误差(Mean Absolute Error,MAE)和均方根误差(Root Mean Square Error,RMSE)分别为63.46和81.33,对比多列卷积神经网络(Multi-column Convolutional Neural Network, MCNN)、拥挤场景识别网络(Congested Scene Recognition Network, CSRNet)、TasselNet、MobileCount等方法,MAE平均下降了48.8%,RMSE平均下降了45.3%。 展开更多
关键词 深度学习 算法 棉花 特征融合 注意力模块 幼苗计数
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部