期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于单类支持向量机的目标跟踪算法研究
1
作者 农丹华 王飞 《电视技术》 北大核心 2014年第19期123-127,共5页
基于分类的跟踪算法成为当前目标跟踪的研究热点。首先把跟踪问题看成是一个目标和背景的二分类问题,根据每一帧的正负样本数据训练SVM分类器,通过分类器的分类概率值确定目标位置。然而,采集正负样本边界的那些样本很容易出现异常点,... 基于分类的跟踪算法成为当前目标跟踪的研究热点。首先把跟踪问题看成是一个目标和背景的二分类问题,根据每一帧的正负样本数据训练SVM分类器,通过分类器的分类概率值确定目标位置。然而,采集正负样本边界的那些样本很容易出现异常点,当把它们作为目标的下一帧位置时将会出现严重的跟踪漂移问题。为此,提出了一种基于单类支持向量机(One-class Support Vector Machine,One-class SVM)的目标跟踪算法,基于One-class SVM分类能有效地排除其他类的干扰,有效地防止异常样本的出现。并结合加权多示例采样方法,使得每个采样样本会根据不同的权值对于分类器的贡献而不同。仿真实验结果表明,改进的跟踪方法是可行的、有效的,有很好的鲁棒性。 展开更多
关键词 二分类 目标跟踪 单类支持向量机 加权多示例采样方法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部