石墨烯器件作为下一代纳米电子器件的有力竞争者受到广泛关注,但对其器件工作机理的研究尚不透彻。对石墨烯纳米带场效应晶体管(graphene nanoribbon field effect transistor,GNRFET)的双极特性进行了研究,分析了偏置电压对GNRFET转移...石墨烯器件作为下一代纳米电子器件的有力竞争者受到广泛关注,但对其器件工作机理的研究尚不透彻。对石墨烯纳米带场效应晶体管(graphene nanoribbon field effect transistor,GNRFET)的双极特性进行了研究,分析了偏置电压对GNRFET转移特性和输出特性的影响,发现除已被关注到的栅电压外,源漏电压对GNRFET的双极特性亦有作用,并将两者综合考虑才能全面反映GNRFET的工作状态。在此基础上,进一步提出了工作区域的概念,将GNR-FET的工作区域划分为空穴导电区、电子导电区、转变区和截止区,为GNRFET器件的应用和电路设计提供指导。展开更多
折叠共源共栅运放结构的运算放大器可以使设计者优化二阶性能指标,这一点在传统的两级运算放大器中是不可能的。特别是共源共栅技术对提高增益、增加PSRR值和在输出端允许自补偿是有很用的。这种灵活性允许在CMOS工艺中发展高性能无缓...折叠共源共栅运放结构的运算放大器可以使设计者优化二阶性能指标,这一点在传统的两级运算放大器中是不可能的。特别是共源共栅技术对提高增益、增加PSRR值和在输出端允许自补偿是有很用的。这种灵活性允许在CMOS工艺中发展高性能无缓冲运算放大器。目前,这样的放大器已被广泛用于无线电通信的集成电路中。介绍了一种折叠共源共栅的运算放大器,采用TSMC 0.18混合信号双阱CMOS工艺库,用HSpice W 2005.03进行设计仿真,最后与设计指标进行比较。展开更多
文摘石墨烯器件作为下一代纳米电子器件的有力竞争者受到广泛关注,但对其器件工作机理的研究尚不透彻。对石墨烯纳米带场效应晶体管(graphene nanoribbon field effect transistor,GNRFET)的双极特性进行了研究,分析了偏置电压对GNRFET转移特性和输出特性的影响,发现除已被关注到的栅电压外,源漏电压对GNRFET的双极特性亦有作用,并将两者综合考虑才能全面反映GNRFET的工作状态。在此基础上,进一步提出了工作区域的概念,将GNR-FET的工作区域划分为空穴导电区、电子导电区、转变区和截止区,为GNRFET器件的应用和电路设计提供指导。
文摘折叠共源共栅运放结构的运算放大器可以使设计者优化二阶性能指标,这一点在传统的两级运算放大器中是不可能的。特别是共源共栅技术对提高增益、增加PSRR值和在输出端允许自补偿是有很用的。这种灵活性允许在CMOS工艺中发展高性能无缓冲运算放大器。目前,这样的放大器已被广泛用于无线电通信的集成电路中。介绍了一种折叠共源共栅的运算放大器,采用TSMC 0.18混合信号双阱CMOS工艺库,用HSpice W 2005.03进行设计仿真,最后与设计指标进行比较。
基金National Natural Science Foundation of China under National Outstanding Young Scientist Award (60788402)National Science Foundation of China (60976067)Fundamental Research Funds for the Central Universities (3101033,1101001,3104009)