期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于卷积神经网络与机器视觉的纸张尘埃度测量系统的设计与应用研究
1
作者
李欢
李亮
《中国造纸》
北大核心
2025年第8期157-163,共7页
本研究基于卷积神经网络(CNN)与机器视觉,设计了纸张尘埃度测量系统。该系统基于模型训练和检验2个模块构建,使用高分辨率扫描仪获取尘埃数据集和纸张样品图片,使用不同优化算法训练分类模型,并采用对角线测量算法,制作标准尘埃像素表...
本研究基于卷积神经网络(CNN)与机器视觉,设计了纸张尘埃度测量系统。该系统基于模型训练和检验2个模块构建,使用高分辨率扫描仪获取尘埃数据集和纸张样品图片,使用不同优化算法训练分类模型,并采用对角线测量算法,制作标准尘埃像素表用于定级和分类统计,进而计算尘埃度。结果表明,该系统的精度可达0.007 mm^(2),优于GB/T 1541—2013《纸和纸板尘埃度的测定》要求,分类准确度达95.89%,能够实现多类纸品的全量程测量,单样本重复性测量误差为0,相比人工检测系统单样本检测用时缩短了约97%,实现了纸类产品尘埃度的高效、精准检测。
展开更多
关键词
纸张尘埃度
卷积神经网络(CNN)
机器视觉
图像处理
在线阅读
下载PDF
职称材料
题名
基于卷积神经网络与机器视觉的纸张尘埃度测量系统的设计与应用研究
1
作者
李欢
李亮
机构
武汉产品质量检验所有限公司
出处
《中国造纸》
北大核心
2025年第8期157-163,共7页
文摘
本研究基于卷积神经网络(CNN)与机器视觉,设计了纸张尘埃度测量系统。该系统基于模型训练和检验2个模块构建,使用高分辨率扫描仪获取尘埃数据集和纸张样品图片,使用不同优化算法训练分类模型,并采用对角线测量算法,制作标准尘埃像素表用于定级和分类统计,进而计算尘埃度。结果表明,该系统的精度可达0.007 mm^(2),优于GB/T 1541—2013《纸和纸板尘埃度的测定》要求,分类准确度达95.89%,能够实现多类纸品的全量程测量,单样本重复性测量误差为0,相比人工检测系统单样本检测用时缩短了约97%,实现了纸类产品尘埃度的高效、精准检测。
关键词
纸张尘埃度
卷积神经网络(CNN)
机器视觉
图像处理
Keywords
paper dirt
convolutional neural network(CNN)
machine vision
image processing
分类号
TS77 [轻工技术与工程—制浆造纸工程]
TP391.41 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于卷积神经网络与机器视觉的纸张尘埃度测量系统的设计与应用研究
李欢
李亮
《中国造纸》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部